-
量子密码是密码学和量子力学结合的产物,它的安全性是由量子力学基本原理保证的 (例如海森堡测不准原理和量子不可克隆原理),而不是基于数学假设。因此,量子密码协议能够实现无条件安全,已经成为国内外量子信息领域的研究热点。目前,许多种类的量子密码协议已经被提出,包括:量子密钥分发[1]、量子秘密共享[2]、量子安全直接通信[3]和量子密钥协商 (QKA)[4-5]等。其中,量子密钥协商协议允许参与者通过量子信道公平地协商一个经典的共享秘密密钥,并且任何一个参与者或参与者的子集都不能独立地确定该共享密钥。目前,它已经成为量子密码协议的新研究热点。
文献[4]基于量子隐形传态技术提出了第一个QKA协议。然而,文献[6]发现在此协议中一个不诚实的参与者可以完全独立地确定共享密钥而不会被检测到,因此该协议不能抵抗参与者攻击。文献[5]基于单光子基和幺正变换也提出了一个QKA协议,但此协议不能抵抗CNOT攻击[7]。文献[8]基于BB84协议[1]提出了一个成功的两方QKA协议。这个协议主要基于幺正变换和延迟测量技术,并且该协议能实现很高的量子比特效率。基于Bell态,几个新的双方QKA协议也被提出,如文献[9-10]。文献[10]将两方QKA协议的概念推广到了多方QKA协议。许多三方和多方的QKA协议也被提出[11-12]。这些协议中有些是安全的,也有些存在安全漏洞。但上述协议大多数是基于单粒子或Bell态的。文献[13]利用四粒子的团簇态提出了一个双方QKA协议,此协议具有较高的量子比特效率。因此,设计更多的基于多粒子纠缠态的QKA协议是非常有意义的。然而,上述QKA协议几乎都是在理想量子信道上进行密钥协商,并未考虑量子信道中噪声的影响。而在实际通信中,量子信道中的噪声是不可避免的。通常,人们将信道噪声视为集体噪声。这主要是因为光子在一个比噪声变化还快的时间窗里传输,将受同样的噪声影响[14-17]。为了消除集体噪声的影响,一个有效的方法是构造无消相干子空间 (decoherence-free subspace, DFS)[16, 18-20],因为无消相干态几乎不受集体噪声的影响。目前,研究者已经提出了一些基于无消相干态的鲁棒量子密码协议,如鲁棒量子密钥分发协议[14-16]和鲁棒量子对话[19-20]等。然而,基于无消相干态的鲁棒QKA协议相对较少。文献[21]基于EPR对和单粒子测量提出了一个两方QKA协议,并利用无消相干态给出了它在噪声信道上的实现。文献[22]又基于无消相干态给出了免疫集体噪声的鲁棒QKA协议。
本文基于四粒子$\chi $态和逻辑量子比特 (2量子比特DF态) 设计了两个分别抵抗集体退相位噪声和集体旋转噪声的鲁棒QKA协议。这两个QKA协议都有较高的量子比特效率。安全性分析表明它们能抵抗已有的参与者攻击和外部攻击。而且,由于这两个QKA协议中的每个粒子仅被传输一次,因此攻击者也无法执行特洛伊木马攻击[23-24]。
-
众所周知,$\{ \left| 0 \right\rangle ,\left| 1 \right\rangle \} $形成了Z基,$\{ \left| + \right\rangle ,\left| - \right\rangle \} $形成了X基,其中$\left| + \right\rangle ={}^{1}\!\!\diagup\!\!{}_{\sqrt{2}}\;(\left| 0 \right\rangle +\left| 1 \right\rangle )$,$\left| - \right\rangle ={}^{1}\!\!\diagup\!\!{}_{\sqrt{2}}\;(\left| 0 \right\rangle -\left| 1 \right\rangle )$。4个Bell态为:
$$ \begin{align} &\left| {{\phi }^{\text{+}}} \right\rangle ={}^{1}\!\!\diagup\!\!{}_{\sqrt{2}}\;(\left| 00 \right\rangle +\left| 11 \right\rangle )\ \ \ \left| {{\phi }^{-}} \right\rangle ={}^{1}\!\!\diagup\!\!{}_{\sqrt{2}}\;(\left| 00 \right\rangle -\left| 11 \right\rangle ) \\ &\left| {{\psi }^{\text{+}}} \right\rangle ={}^{1}\!\!\diagup\!\!{}_{\sqrt{2}}\;(\left| 01 \right\rangle +\left| 10 \right\rangle )\ \ \ \left| {{\psi }^{-}} \right\rangle ={}^{1}\!\!\diagup\!\!{}_{\sqrt{2}}\;(\left| 01 \right\rangle -\left| 10 \right\rangle ) \\ \end{align} $$ (1) 它们形成了四维Hilbert空间的一组完全正交基,即Bell基。$\chi $态是四粒子的最大纠缠态,本文的协议使用如下的一个$\chi $态作为量子信源[25],即:
$$\begin{array}{c} {\left| {{\chi ^{00}}} \right\rangle _{ABCD}} = \frac{1}{{2\sqrt 2 }}(\left| {0000} \right\rangle + \left| {0011} \right\rangle - \left| {0101} \right\rangle + \left| {0110} \right\rangle + \\ \left| {1001} \right\rangle + \left| {1010} \right\rangle + \left| {1100} \right\rangle - \left| {1111} \right\rangle {)_{ABCD}} = \\ \frac{1}{2}({\left| {{\phi ^ + }} \right\rangle _{AB}}{\left| {00} \right\rangle _{CD}} - {\left| {{\psi ^ - }} \right\rangle _{AB}}{\left| {01} \right\rangle _{CD}} + \\ {\left| {{\psi ^ + }} \right\rangle _{AB}}{\left| {10} \right\rangle _{CD}} + {\left| {{\phi ^ - }} \right\rangle _{AB}}{\left| {11} \right\rangle _{CD}}) \end{array}$$ (2) 根据上式可知,若对${\left| {{\chi ^{00}}} \right\rangle _{ABCD}}$的粒子$A$和$B$执行Bell测量,对粒子$ C$和$ D$执行$Z \otimes Z$基测量 ($Z \otimes Z{\rm{ = \{ }}\left| {{\rm{00}}} \right\rangle ,\left| {{\rm{01}}} \right\rangle ,\left| {{\rm{10}}} \right\rangle ,\left| {{\rm{11}}} \right\rangle {\rm{\} }}$),则系统分别以$1/4$的概率塌缩到态${\left| {{\phi ^ + }} \right\rangle _{AB}}{\left| {00} \right\rangle _{CD}}$, ${\left| {{\psi ^ - }} \right\rangle _{AB}}{\left| {01} \right\rangle _{CD}}$, ${\left| {{\psi ^ + }} \right\rangle _{AB}}{\left| {10} \right\rangle _{CD}}$和${\left| {{\phi ^ - }} \right\rangle _{AB}}{\left| {11} \right\rangle _{CD}}$。
-
一个量子信道上的集体退相位噪声对两个极化光子$\left| 0 \right\rangle $和$\left| 1 \right\rangle $的影响可以表述为[16]:
$${{U}_{dp}}\left| 0 \right\rangle =\left| 0 \right\rangle \text{ }{{U}_{dp}}\left| 1 \right\rangle ={{e}^{\text{i}\varphi }}\left| 1 \right\rangle $$ (3) 式中,$\varphi $是随时间变化的集体退相位噪声参数。两个逻辑量子比特${\left| 0 \right\rangle _{dp}} = \left| {01} \right\rangle $, ${\left| 1 \right\rangle _{dp}} = \left| {10} \right\rangle $以及它们的叠加态${{\left| \pm \right\rangle }_{dp}}={}^{1}\!\!\diagup\!\!{}_{\sqrt{2}}\;({{\left| 0 \right\rangle }_{dp}}\pm {{\left| 1 \right\rangle }_{dp}})={}^{1}\!\!\diagup\!\!{}_{\sqrt{2}}\;(\left| 01 \right\rangle \pm \left| 10 \right\rangle )$都不受集体退相位噪声的影响[18-20]。
假设Alice和Bob两人想协商一个秘密密钥。首先,Alice和Bob协商如下量子态的编码:
$$ \begin{array}{l} {\left| {{\phi ^ + }} \right\rangle _{AB}} \to 00\;\;{\left| {{\psi ^ - }} \right\rangle _{AB}} \to 01\;\;\;{\left| {{\psi ^ + }} \right\rangle _{AB}} \to 10\\ {\left| {{\phi ^ - }} \right\rangle _{AB}} \to 11\;\;\;{\left| {00} \right\rangle _{CD}} \to 00\;\;\;{\left| {01} \right\rangle _{CD}} \to 01\\ \;\;\;\;\;{\left| {10} \right\rangle _{CD}} \to 10\;\;\;{\left| {11} \right\rangle _{CD}} \to 11 \end{array} $$ (4) 协议步骤如下:
1) Alice准备$ n$个逻辑$\chi $态${{\left| \chi _{dp}^{00} \right\rangle }_{ABCD}}$:
$$\begin{array}{c} {\left| {\chi _{dp}^{00}} \right\rangle _{ABCD}} = \frac{1}{{2\sqrt 2 }}(\left| 0 \right\rangle \left| 0 \right\rangle {\left| 0 \right\rangle _{dp}}{\left| 0 \right\rangle _{dp}} + \left| 0 \right\rangle \left| 0 \right\rangle {\left| 1 \right\rangle _{dp}}{\left| 1 \right\rangle _{dp}} - \\ \left| 0 \right\rangle \left| 1 \right\rangle {\left| 0 \right\rangle _{dp}}{\left| 1 \right\rangle _{dp}} + \left| 0 \right\rangle \left| 1 \right\rangle {\left| 1 \right\rangle _{dp}}{\left| 0 \right\rangle _{dp}} + \\ \left| 1 \right\rangle \left| 0 \right\rangle {\left| 0 \right\rangle _{dp}}{\left| 1 \right\rangle _{dp}} + \left| 1 \right\rangle \left| 0 \right\rangle {\left| 1 \right\rangle _{dp}}{\left| 0 \right\rangle _{dp}} + \\ \left| 1 \right\rangle \left| 1 \right\rangle {\left| 0 \right\rangle _{dp}}{\left| 0 \right\rangle _{dp}} - \left| 1 \right\rangle \left| 1 \right\rangle {\left| 1 \right\rangle _{dp}}{\left| 1 \right\rangle _{dp}}{)_{ABCD}}{\rm{ = }}\\ \frac{1}{{2\sqrt 2 }}({\left| {00} \right\rangle _{AB}}{\left| {01} \right\rangle _{{C_1}{C_2}}}{\left| {01} \right\rangle _{{D_1}{D_2}}} + {\left| {00} \right\rangle _{AB}}{\left| {10} \right\rangle _{{C_1}{C_2}}}{\left| {10} \right\rangle _{{D_1}{D_2}}} - \\ {\left| {01} \right\rangle _{AB}}{\left| {01} \right\rangle _{{C_1}{C_2}}}{\left| {10} \right\rangle _{{D_1}{D_2}}} + {\left| {01} \right\rangle _{AB}}{\left| {10} \right\rangle _{{C_1}{C_2}}}{\left| {01} \right\rangle _{{D_1}{D_2}}} + \\ {\left| {10} \right\rangle _{AB}}{\left| {01} \right\rangle _{{C_1}{C_2}}}{\left| {10} \right\rangle _{{D_1}{D_2}}} + {\left| {10} \right\rangle _{AB}}{\left| {10} \right\rangle _{{C_1}{C_2}}}{\left| {01} \right\rangle _{{D_1}{D_2}}} + \\ {\left| {11} \right\rangle _{AB}}{\left| {01} \right\rangle _{{C_1}{C_2}}}{\left| {01} \right\rangle _{{D_1}{D_2}}} - {\left| {11} \right\rangle _{AB}}{\left| {10} \right\rangle _{{C_1}{C_2}}}{\left| {10} \right\rangle _{{D_1}{D_2}}}) \end{array}$$ (5) 并将所有粒子分成4个有序的序列,其中序列${S_A}$和${S_B}$分别由所有的光子$ A$和$ B$组成;而序列${S_C}$和${S_C}$分别由所有的逻辑量子比特$C$和$D$组成。Alice从集合{${S_C}$}中随机选出足够多 (例如$2m$个) 的诱骗逻辑量子比特,并且随机地插入序列${S_C}$和${S_D}$得到新的序列${S'_C}$和${S'_D}$。Alice保留序列${S_A}$和${S_B}$,将序列${S'_C}$和${S'_D}$发送给Bob。
2) 当Bob收到序列${S'_C}$和${S'_D}$后,通过经典认证信道告知Alice。Alice公布诱骗逻辑量子比特的位置与相应的制备基。则Bob用正确的测量基去测量相应的诱骗逻辑量子比特,并将测量结果告诉Alice。Alice比较测量结果和诱骗逻辑量子比特的初始状态,并计算错误率,根据错误率的值判断窃听者Eve是否存在。如果错误率低于预先给定的门限值 (例如0.1~0.2之间的某个值),则Alice和Bob继续此协议的下一步。否则,认为存在Eve窃听,Alice和Bob停止此协议并且重新开始。
3) 除去诱骗粒子后,序列${S'_C}$和${S'_D}$又恢复为序列${S_C}$和${S_D}$。Bob对序列${S_C}$中的每一个逻辑量子比特中的光子${C_1}$和${C_2}$执行CNOT操作,其中${C_1}$作为控制量子比特,$作为目标量子比特。同样,Bob也对序列${D_1}$中的每一个逻辑量子比特中的光子${D_1}$和${D_2}$执行CNOT操作,其中${D_1}$作为控制量子比特,${D_2}$作为目标量子比特。执行两次CNOT操作后,每一个逻辑$\chi $态${\left| {\chi _{dp}^{00}} \right\rangle _{ABCD}}$变为一个新的量子态${\left| {{\Lambda _{dp}}} \right\rangle _{ABCD}}$:
$$\begin{array}{c} {\left| {{\Lambda _{dp}}} \right\rangle _{ABCD}}{\rm{ = }}\frac{1}{{2\sqrt 2 }}({\left| {00} \right\rangle _{AB}}{\left| {01} \right\rangle _{{C_1}{C_2}}}{\left| {01} \right\rangle _{{D_1}{D_2}}} + \\ {\left| {00} \right\rangle _{AB}}{\left| {11} \right\rangle _{{C_1}{C_2}}}{\left| {11} \right\rangle _{{D_1}{D_2}}} - \\ {\left| {01} \right\rangle _{AB}}{\left| {01} \right\rangle _{{C_1}{C_2}}}{\left| {11} \right\rangle _{{D_1}{D_2}}} + {\left| {01} \right\rangle _{AB}}{\left| {11} \right\rangle _{{C_1}{C_2}}}{\left| {01} \right\rangle _{{D_1}{D_2}}} + \\ {\left| {10} \right\rangle _{AB}}{\left| {01} \right\rangle _{{C_1}{C_2}}}{\left| {11} \right\rangle _{{D_1}{D_2}}} + {\left| {10} \right\rangle _{AB}}{\left| {11} \right\rangle _{{C_1}{C_2}}}{\left| {01} \right\rangle _{{D_1}{D_2}}} + \\ {\left| {11} \right\rangle _{AB}}{\left| {01} \right\rangle _{{C_1}{C_2}}}{\left| {01} \right\rangle _{{D_1}{D_2}}} - {\left| {11} \right\rangle _{AB}}{\left| {10} \right\rangle _{{C_1}{C_2}}}{\left| {10} \right\rangle _{{D_1}{D_2}}}) = \\ \frac{1}{{2\sqrt 2 }}(\left| {0000} \right\rangle + \left| {0011} \right\rangle - \left| {0101} \right\rangle + \left| {0110} \right\rangle + \\ \left| {1001} \right\rangle + \left| {1010} \right\rangle + \left| {1100} \right\rangle - \left| {1111} \right\rangle {)_{AB{C_1}{D_1}}}{\left| {11} \right\rangle _{{C_2}{D_2}}} = \\ {\left| {{\chi ^{00}}} \right\rangle _{AB{C_1}{D_1}}}{\left| {11} \right\rangle _{{C_2}{D_2}}} \end{array}$$ (6) 因此,Alice和Bob已经共享了$n$个$\chi $态${\left| {{\chi ^{00}}} \right\rangle _{AB{C_1}{D_1}}}$。Alice对序列${S_A}$和${S_B}$中序号相同的两个粒子执行Bell测量,而Bob对序列${S_D}$和${S_C}$中序号相同的两个粒子${C_1}$和${D_1}$执行$Z \otimes Z$基测量。由于$\chi $态${\left| {{\chi ^{00}}} \right\rangle _{AB{C_1}{D_1}}}$的测量相关性和事先两人协商的量子态的编码,Alice和Bob能共享相同的$2n$比特的经典秘密密钥,即为两人的共享密钥。
下面举例说明为什么Alice和Bob能得到相同的密钥。设$n = 1$,在协议的步骤3),Alice和Bob分别拥有同一个$\chi $态${\left| {{\chi ^{00}}} \right\rangle _{AB{C_1}{D_1}}}$的两个粒子,即Alice拥有粒子$ A$和$ B$,而Bob拥有粒子${C_1}$和${D_1}$。当Alice对粒子$ A$和$ B$执行Bell测量,Bob对粒子${C_1}$和${D_1}$执行$Z \otimes Z$基测量后,${\left| {{\chi ^{00}}} \right\rangle _{AB{C_1}{D_1}}}$态必然以$1/4$的概率塌缩到态${\left| {{\phi ^ + }} \right\rangle _{AB}}{\left| {00} \right\rangle _{{C_1}{D_1}}}$,${\left| {{\psi ^ - }} \right\rangle _{AB}}{\left| {01} \right\rangle _{{C_1}{D_1}}}$,${\left| {{\psi ^ + }} \right\rangle _{AB}}{\left| {10} \right\rangle _{{C_1}{D_1}}}$和${\left| {{\phi ^ - }} \right\rangle _{AB}}{\left| {11} \right\rangle _{{C_1}{D_1}}}$中的某一个。假设$态塌缩到态${\left| {{\chi ^{00}}} \right\rangle _{AB{C_1}{D_1}}}$。则Alice的Bell测量结果为${\left| {{\psi ^ - }} \right\rangle _{AB}}$,根据事先协商的量子态的编码,Alice得到的共享密钥为$01$。而Bob的$Z \otimes Z$基测量结果为${\left| {01} \right\rangle _{{C_1}{D_1}}}$,根据事先协商的量子态的编码,Alice得到的共享密钥也为$01$。因此,Alice和Bob得到了相同的共享密钥。
-
一个量子信道上的集体旋转噪声对两个极化光子$\left| 0 \right\rangle $和$\left| 1 \right\rangle $的影响可以表述为[18-20]:
$$\begin{array}{l} {U_r}\left| 0 \right\rangle = \cos \theta \left| 0 \right\rangle + \sin \theta \left| 1 \right\rangle \\ {U_r}\left| 1 \right\rangle = - \sin \theta \left| 0 \right\rangle + \cos \theta \left| 1 \right\rangle \end{array}$$ (7) 式中,$\theta $是随时间变化的集体旋转噪声参数。两个逻辑量子比特${\left| 0 \right\rangle _r} = \left| {{\phi ^ + }} \right\rangle $, ${\left| 1 \right\rangle _r} = \left| {{\psi ^ - }} \right\rangle $以及它们的叠加态${{\left| \pm \right\rangle }_{r}}={}^{1}\!\!\diagup\!\!{}_{\sqrt{2}}\;({{\left| 0 \right\rangle }_{r}}\pm {{\left| 1 \right\rangle }_{r}})$都不受集体旋转噪声的影响[18-20]。
假设Alice和Bob两人想协商一个秘密密钥。首先,Alice和Bob协商如下量子态的编码:
$$ \begin{array}{l} \;\;\;\;\;{\left| {{\phi ^ + }} \right\rangle _{AB}} \to 00\;\;\;\;\;\;{\left| {{\psi ^ - }} \right\rangle _{AB}} \to 01\\ \;\;\;\;\;{\left| {{\psi ^ + }} \right\rangle _{AB}} \to 10\;\;\;\;\;\;{\left| {{\phi ^ - }} \right\rangle _{AB}} \to 11\\ {\left| {{\phi ^ + }} \right\rangle _{{C_1}{C_2}}}{\left| {{\phi ^ + }} \right\rangle _{{D_1}{D_2}}} \to 00\;\;\;{\left| {{\phi ^ + }} \right\rangle _{{C_1}{C_2}}}{\left| {{\psi ^ - }} \right\rangle _{{D_1}{D_2}}} \to 01\\ {\left| {{\psi ^ - }} \right\rangle _{{C_1}{C_2}}}{\left| {{\phi ^ + }} \right\rangle _{{D_1}{D_2}}} \to 10\;\;\;{\left| {{\psi ^ - }} \right\rangle _{{C_1}{C_2}}}{\left| {{\psi ^ - }} \right\rangle _{{D_1}{D_2}}} \to 11 \end{array} $$ (8) 协议步骤如下:
1) Alice准备$n$个逻辑$\chi $态${\left| {\chi _r^{00}} \right\rangle _{ABCD}}$:
$$ \begin{array}{c} {\left| {\chi _r^{00}} \right\rangle _{ABCD}} = \frac{1}{{2\sqrt 2 }}(\left| 0 \right\rangle \left| 0 \right\rangle {\left| 0 \right\rangle _r}{\left| 0 \right\rangle _r} + \left| 0 \right\rangle \left| 0 \right\rangle {\left| 1 \right\rangle _r}{\left| 1 \right\rangle _r} - \\ \left| 0 \right\rangle \left| 1 \right\rangle {\left| 0 \right\rangle _r}{\left| 1 \right\rangle _r} + \left| 0 \right\rangle \left| 1 \right\rangle {\left| 1 \right\rangle _r}{\left| 0 \right\rangle _r} + \\ \left| 1 \right\rangle \left| 0 \right\rangle {\left| 0 \right\rangle _r}{\left| 1 \right\rangle _r} + \left| 1 \right\rangle \left| 0 \right\rangle {\left| 1 \right\rangle _r}{\left| 0 \right\rangle _r} + \\ \left| 1 \right\rangle \left| 1 \right\rangle {\left| 0 \right\rangle _r}{\left| 0 \right\rangle _r} - \left| 1 \right\rangle \left| 1 \right\rangle {\left| 1 \right\rangle _r}{\left| 1 \right\rangle _r}{)_{ABCD}}{\rm{ = }}\\ \frac{1}{{4\sqrt 2 }}[{\left| {00} \right\rangle _{AB}}{(\left| {00} \right\rangle + \left| {11} \right\rangle )_{{C_1}{C_2}}}{(\left| {00} \right\rangle + \left| {11} \right\rangle )_{{D_1}{D_2}}} + \\ {\left| {00} \right\rangle _{AB}}{(\left| {01} \right\rangle - \left| {10} \right\rangle )_{{C_1}{C_2}}}{(\left| {01} \right\rangle - \left| {10} \right\rangle )_{{D_1}{D_2}}} - \\ {\left| {01} \right\rangle _{AB}}{(\left| {00} \right\rangle + \left| {11} \right\rangle )_{{C_1}{C_2}}}{(\left| {01} \right\rangle - \left| {10} \right\rangle )_{{D_1}{D_2}}} + \\ {\left| {01} \right\rangle _{AB}}{(\left| {01} \right\rangle - \left| {10} \right\rangle )_{{C_1}{C_2}}}{(\left| {00} \right\rangle + \left| {11} \right\rangle )_{{D_1}{D_2}}} + \\ {\left| {10} \right\rangle _{AB}}{(\left| {00} \right\rangle + \left| {11} \right\rangle )_{{C_1}{C_2}}}{(\left| {01} \right\rangle - \left| {10} \right\rangle )_{{D_1}{D_2}}} + \\ {\left| {10} \right\rangle _{AB}}{(\left| {01} \right\rangle - \left| {10} \right\rangle )_{{C_1}{C_2}}}{(\left| {00} \right\rangle + \left| {11} \right\rangle )_{{D_1}{D_2}}} + \\ {\left| {11} \right\rangle _{AB}}{(\left| {00} \right\rangle + \left| {11} \right\rangle )_{{C_1}{C_2}}}{(\left| {00} \right\rangle + \left| {11} \right\rangle )_{{D_1}{D_2}}} - \\ {\left| {11} \right\rangle _{AB}}{(\left| {01} \right\rangle - \left| {10} \right\rangle )_{{C_1}{C_2}}}{(\left| {01} \right\rangle - \left| {10} \right\rangle )_{{D_1}{D_2}}}]{\rm{ = }}\\ \frac{1}{{4\sqrt 2 }}[{(\left| {00} \right\rangle + \left| {11} \right\rangle )_{AB}}{(\left| {00} \right\rangle + \left| {11} \right\rangle )_{{C_1}{C_2}}}{(\left| {00} \right\rangle + \left| {11} \right\rangle )_{{D_1}{D_2}}} + \\ {(\left| {00} \right\rangle - \left| {11} \right\rangle )_{AB}}{(\left| {01} \right\rangle - \left| {10} \right\rangle )_{{C_1}{C_2}}}{(\left| {01} \right\rangle - \left| {10} \right\rangle )_{{D_1}{D_2}}} - \\ {(\left| {01} \right\rangle - \left| {10} \right\rangle )_{AB}}{(\left| {00} \right\rangle + \left| {11} \right\rangle )_{{C_1}{C_2}}}{(\left| {01} \right\rangle - \left| {10} \right\rangle )_{{D_1}{D_2}}} + \\ {(\left| {01} \right\rangle + \left| {10} \right\rangle )_{AB}}{(\left| {01} \right\rangle - \left| {10} \right\rangle )_{{C_1}{C_2}}}{(\left| {00} \right\rangle + \left| {11} \right\rangle )_{{D_1}{D_2}}}] = \\ \frac{1}{{4\sqrt 2 }}[{\left| {{\phi ^ + }} \right\rangle _{AB}}{\left| {{\phi ^ + }} \right\rangle _{{C_1}{C_2}}}{\left| {{\phi ^ + }} \right\rangle _{{D_1}{D_2}}} + {\left| {{\phi ^ - }} \right\rangle _{AB}}{\left| {{\psi ^ - }} \right\rangle _{{C_1}{C_2}}}{\left| {{\psi ^ - }} \right\rangle _{{D_1}{D_2}}} - \\ {\left| {{\psi ^ - }} \right\rangle _{AB}}{\left| {{\phi ^ + }} \right\rangle _{{C_1}{C_2}}}{\left| {{\psi ^ - }} \right\rangle _{{D_1}{D_2}}} + {\left| {{\psi ^ + }} \right\rangle _{AB}}{\left| {{\psi ^ - }} \right\rangle _{{C_1}{C_2}}}{\left| {{\phi ^ + }} \right\rangle _{{D_1}{D_2}}}] \end{array} $$ (9) 并将所有粒子分成4个有序的序列,其中序列$和${S_B}$分别由所有的光子$ A$和$ B$组成;而序列${S_C}$和${S_D}$分别由所有的逻辑量子比特$ C$和$ D$组成。Alice从集合{${\left| 0 \right\rangle _r},{\left| 1 \right\rangle _r},{\left| + \right\rangle _r},{\left| - \right\rangle _r}$}中随机选出足够多 (例如$2m$个) 的诱骗逻辑量子比特,并且随机地插入序列${S_C}$和${S_D}$得到新的序列${S'_C}$和${S'_D}$。Alice自己保留序列${S_A}$和${S_B}$,将序列${S'_C}$和${S'_D}$发送给Bob。
2) 当Bob收到序列${S'_C}$和$后,他通过经典认证信道告知Alice。Alice和Bob用与前一个协议完全类似的窃听检测方法进行安全检测。如果错误率低于预先给定的门限值,则Alice和Bob继续此协议的下一步。否则,认为存在Eve窃听,Alice和Bob停止此协议并且重新开始。
3) 除去诱骗逻辑量子比特后,序列${S'_C}$和${S'_D}$又恢复为序列${S_C}$和${S_D}$。因此,Alice和Bob已经共享了$n$个逻辑$\chi $态${\left| {\chi _r^{00}} \right\rangle _{AB{C_1}{C_2}{D_1}{D_2}}}$。Alice对序列${S_A}$和${S_B}$中序号相同的两个粒子执行Bell测量。Bob对序列${S_C}$中的每一个逻辑量子比特中的两个光子${C_1}$和${D_2}$执行Bell测量,也对序列${S_D}$中的每一个逻辑量子比特中的两个光子${D_1}$和${D_2}$执行Bell测量。由于逻辑$\chi $态${\left| {\chi _r^{00}} \right\rangle _{AB{C_1}{C_2}{D_1}{D_2}}}$的测量相关性和事先两人协商的量子态的编码,Alice和Bob能共享相同的$2n$比特的经典秘密密钥,即为两人的共享密钥。
Two-Party Quantum Key Agreement Protocols Based on Four-Particle Entangled States
-
摘要: 量子密钥协商协议允许参与者通过公开的量子信道公平地协商一个共享秘密密钥,任何参与者的子集都不能独立地确定该共享密钥。它的安全性由量子力学原理保证,因此能够实现无条件安全,已经吸引了大量的关注。该文基于四粒子纠缠态和逻辑量子比特,提出了两个分别抵抗集体退相位噪声和集体旋转噪声的鲁棒的两方量子密钥协商协议。安全性分析证明这两个协议既能抵抗参与者和外部攻击,也能成功地抵抗两种特洛伊木马攻击。另外,这两个协议也能达到比较高的量子比特效率。Abstract: Quantum key agreement (QKA) protocols allow participants to negotiate a classical shared secret key fairly via public quantum channels. Furthermore, the shared key cannot be determined independently by any subset of the participants. Their security is assured by the quantum mechanics principles, so they can achieve unconditional security and have drawn considerable attention. Based on four-particle entangled states and logical qubits, two robust two-party quantum key agreement protocols against collective-dephasing noise and collective-rotation noise are proposed. The security analysis shows that the two protocols can not only resist against participant attacks and outsider attacks, but also resist against two kinds of Trojan horse attacks. Furthermore, the two protocols also achieve higher qubit efficiency.
-
Key words:
- four-particle entangled state /
- outsider attack /
- participant attack /
- QKA /
- quantum cryptography
-
[1] BENNETT C H, BRASSARD G. Quantum cryptography:Public-key distribution and coin tossing[C]//Proceedings of IEEE International Conference on Computers, Systems and Signal Processing. Bangalore, India:IEEE, 1984:175-179. [2] LIN J, HWANG T. New circular quantum secret sharing for remote agents[J]. Quantum Information Processing, 2013, 12(1):685-697. doi: 10.1007/s11128-012-0413-8 [3] YIN X R, MA W P, LIU W Y, et al. Efficient bidirectional quantum secure communication with two-photon entanglement[J]. Quantum Information Processing, 2013, 12(9):3903-3102. [4] ZHOU N, ZENG G, XIONG J. Quantum key agreement protocol[J]. Electronics Letter, 2004, 40(18):1149-1150. doi: 10.1049/el:20045183 [5] HSUEH, C C, CHEN C Y. Quantum key agreement protocol with maximally entangled states[C]//Proceedings of the 14th Information Security Conference (ISC 2004). Taipei, China:National Taiwan University of Science and Technology, 2004:236-242. [6] TSAI C W, HWANG T. On "quantum key agreement protocol"[R]. CS-I-E, NCKU. Taiwan, China:R.O.C, 2009. [7] TSAI C W, CHONG S K, HWANG T. Comment on quantum key agreement protocol with maximally entangled states[C]//Proceedings of the 20th Cryptology and Information Security Conference (CISC 2010). Hsinchu:National Chiao Tung University, 2010:210-213. [8] CHONG S K, HWANG T. Quantum key agreement protocol based on BB84[J]. Optics Communications, 2010, 283(6):1192-1195. doi: 10.1016/j.optcom.2009.11.007 [9] CHONG S K, TSAI C W, HWANG T. Improvement on quantum key agreement protocol with maximally entangled states[J]. International Journal of Theoretical Physics, 2011, 50(6):1793-1802. doi: 10.1007/s10773-011-0691-4 [10] SHI R H, ZHONG H. Multi-party quantum key agreement with Bell states and Bell measurements[J]. Quantum Information Processing, 2013, 12(2):921-932. doi: 10.1007/s11128-012-0443-2 [11] YIN X R, MA W P, LIU W Y. Three-party quantum key agreement with two-photon entanglement[J]. International Journal of Theoretical Physics, 2013, 52(11):3915-3921. doi: 10.1007/s10773-013-1702-4 [12] XU G B, WEN Q Y, GAO F, et al. Novel multiparty quantum key agreement protocol with GHZ states[J]. Quantum Information Processing, 2014, 13(12):2587-2594. doi: 10.1007/s11128-014-0816-9 [13] SHEN D S, MA W P, WANG L L. Two-party quantum key agreement with four-qubit cluster states[J]. Quantum Information Processing, 2014, 13(10):2313-2324. doi: 10.1007/s11128-014-0785-z [14] LI X H, DENG F G, ZHOU H Y. Efficient quantum key distribution over a collective noise channel[J]. Physical Review A, 2008, 78(2):022321. doi: 10.1103/PhysRevA.78.022321 [15] LI X H, ZHAO B K, SHENG Y B, et al. Fault tolerant quantum key distribution based on quantum dense coding with collective noise[J]. International Journal of Quantum Information, 2009, 7(8):1479-1489. doi: 10.1142/S021974990900595X [16] WALTON Z D, ABOURADDY A F, SERGIENKO A V, et al. Decoherence-free subspaces in quantum key distribution[J]. Physical Review Letters, 2003, 91(8):087901. doi: 10.1103/PhysRevLett.91.087901 [17] WANG R J, LI D F, LIU Y, et al. Two ways of robust quantum dialogue by using four-qubit cluster state[J]. International Journal of Theoretical Physics, 2015:10.1007/s10773-015-2850-5. [18] WANG R J, LI D F, QIN Z G. An immune quantum communication model for dephasing noise using four-qubit cluster state[J]. International Journal of Theoretical Physics, 2016, 55(1):609-616. doi: 10.1007/s10773-015-2698-8 [19] 叶天语.基于一个共享辅助逻辑Bell态的抗集体噪声鲁棒量子对话[J].中国科学:物理学力学天文学, 2015, 45(4):040301. doi: 10.1360/SSPMA2014-00289 YE Tian-yu. Robust quantum dialogue based on a shared auxiliary logical Bell state against collective noise[J]. Sci Sin-Phys Mech Astron, 2015, 45(4):040301. doi: 10.1360/SSPMA2014-00289 [20] 叶天语.基于逻辑量子比特和控制非操作的鲁棒量子对话[J].中国科学:物理学力学天文学, 2015, 45(3):030301. doi: 10.1360/SSPMA2014-00444 YE Tian-yu. Robust quantum dialogue based on logical qubits and controlled-not operations[J]. Sci Sin-Phys Mech Astron, 2015, 45(3):030301. doi: 10.1360/SSPMA2014-00444 [21] HUANG W, WEN, Q Y, LIU B, et al. Quantum key agreement with EPR pairs and single-particle measurements[J]. Quantum Inf Process Quantum Information Processing, 2014, 13(3):649-663. doi: 10.1007/s11128-013-0680-z [22] HUANG W, SU Q, WU X, et al. Quantum key agreement against collective decoherence[J]. International Journal of Theoretical Physics, 2014, 53(9):2891-2901. doi: 10.1007/s10773-014-2087-8 [23] CAI Q Y. Eavesdropping on the two-way quantum communication protocols with invisible photons[J]. Physics Letters A, 2006, 351(1-2):23-25. doi: 10.1016/j.physleta.2005.10.050 [24] DENG F G, LI X H, ZHOU H Y, et al. Improving the security of multiparty quantum secret sharing against Trojan horse attack[J]. Physical Review A, 2005, 72(4):044302. doi: 10.1103/PhysRevA.72.044302 [25] YE T Y. Quantum dialogue without information leakage using a single quantum entangled state[J]. International Journal of Theoretical Physics, 2014, 53(11), 3719-3727. doi: 10.1007/s10773-014-2124-7 [26] HE Y F, MA W P. Quantum key agreement protocols with four-qubit cluster states[J]. Quantum Information Processing, 2015, 14(9):3483-3498. doi: 10.1007/s11128-015-1060-7 [27] CABELLO A. Quantum key distribution in the Holevo limit[J]. Physical Review Letters, 2000, 85(26):5635-5638. doi: 10.1103/PhysRevLett.85.5635
计量
- 文章访问数: 6783
- HTML全文浏览量: 2023
- PDF下载量: 128
- 被引次数: 0