-
GaN HEMTs具有功率密度大、电子迁移率高、耐高温等优势,正被广泛应用于微波毫米波通信与雷达系统中[1-2]。为进一步提高GaN HEMTs的功率密度,在器件中引入各种场板结构成为目前研究的重点[3-5]。例如,通过将栅极向栅漏区域延伸,形成栅场板结构 (gate-field plate, G-FP),它调制了栅极下电场分布,减小了栅极下面靠近漏端的峰值电场强度,使得场板GaN HEMTs的击穿电压提高到1.9 KV[3],功率密度超过40 W/mm[4]。然而,栅场板也会增大寄生效应、栅电容及耗尽层长度,引起器件的增益下降,因此往往需要在击穿电压和增益之间折中考虑。为更好地解决该问题,斜场板、双场板或多场板等结构被用于功率器件中[4-5],在栅场板基础上,增加了源场板 (source-field plate, S-FP) 结构,能起到降低反馈电容 (Cgd) 和改善大信号增益特性的作用;该场板下的耗尽区域不会受输入信号调制的影响,能够改善器件的线性度。此外,场板结构能降低表面陷阱的影响,减小色散特性,进而起到改善跨导、增益、减小泄漏电流和增强器件的稳定性等作用[4]。因此,场板结构广泛应用于GaN HEMTs等功率器件中。
目前,有关场板GaN HEMTs器件的模型研究主要集中在利用解析或者数值仿真法优化场板结构及分析场板对器件性能的影响[6-8];而针对不同场板GaN HEMTs的通用大信号模型研究较少,以及利用该模型对器件大信号特性的分析少有研究。
本文针对栅、源两种场板GaN HEMTs,提出了一种包含非线性热网络的电热大信号模型。采用Ansys (v. 14) 热仿真的方法,提取了两种场板器件的热阻和热容参数,并嵌入到改进的Angelov经验模型中;分析了两种场板结构对寄生参数、小信号特性和大信号负载阻抗等的影响。最终将该大信号模型嵌入到ADS仿真软件中,完成在片测试与仿真结果对比,验证了该模型的准确性。
-
虽然栅、源场板器件在结构上不同,寄生效应等也有所区别,但可以用一个通用的大信号等效电路拓扑来模拟,如图 1所示。图 2为本文所采用的电热大信号等效电路模型。它包括外部的寄生电阻、电容和电感,内部的本征电容、漏源电流和栅极电流等元件,以及表征器件自热效应的热网络参数。
完整的模型建模流程如图 3所示,从小信号S参数测试出发,提取寄生参数和本征参数;由直流 (DC-Ⅳ) 和脉冲 (Pulsed-Ⅳ) 测试获得电流特性和色散特性;用FEM热仿真得到自热效应参数。最终将模型用符号定义器件 (symbolically-defined device, SDD) 嵌入到ADS软件中,并将仿真结果与大信号测试结果对比,完成模型的验证。
-
Angelov经验模型广泛用于场效应晶体管 (field effect transistors, FETs) 大信号紧凑模型中[9-11]。由于GaN HEMTs有较明显的自热和陷阱效应,故本文在Angelov模型基础上,采用改进的Ids公式[9]:
$${I_{{\rm{ds}}}} = {I_{{\rm{pkth}}}}(1 + {M_{{\rm{ipkth}}}}\tanh (\psi ))\tanh (\alpha {V_{{\rm{ds}}}})$$ (1) 其中,
$${I_{{\rm{pkth}}}} = {I_{{\rm{pk0}}}}(1 + {k_{{\rm{ipk0}}}}\Delta {T_{{\rm{ch}}}}^\prime )$$ (2) $$\begin{array}{c} {M_{{\rm{ipkth}}}} = (1 + 0.5({M_{{\rm{ipkl}}}} - 1)(1 + \tanh (qm \times \\ ({V_{{\rm{gseff}}}} - {V_{{\rm{gsm}}}})))){\kern 1pt} {\kern 1pt} (1 + {k_M}\Delta {T_{{\rm{ch}}}}^\prime ) \end{array}$$ (3) $$\begin{array}{c} \psi = {P_{{\rm{k1th}}}}({V_{{\rm{gseff}}}} - {V_{{\rm{pk1}}}}) + {P_{{\rm{k2th}}}}{({V_{{\rm{gseff}}}} - {V_{{\rm{pk}}2}})^2} + \\ {P_{{\rm{k3th}}}}{({V_{{\rm{gseff}}}} - {V_{{\rm{pk3}}}})^3} \end{array}$$ (4) $$\begin{array}{c} {V_{{\rm{gseff}}}} = {V_{{\rm{gs}}}} + {k_{{\rm{surf}}}}({V_{{\rm{gsq}}}} - {V_{{\rm{gspinchoff}}}})({V_{{\rm{gs}}}} - {V_{{\rm{gspinchoff}}}}) + \\ {k_{{\rm{subs}}}}({V_{{\rm{dsq}}}} + {V_{{\rm{dssub0}}}})({V_{{\rm{ds}}}} - {V_{{\rm{dsq}}}}) \end{array}$$ (5) $$\begin{array}{c} {P_{{\rm{knth}}}} = ({k_{n0}} + ({k_{n0}} + {k_{n1}}{V_{ds}})\tanh ({\alpha _n}{V_{{\rm{ds}}}})) \times \\ (1 + {k_{{\rm{pn}}}}\Delta {T_{{\rm{ch}}}}^\prime ){\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} n = 1,2,{\kern 1pt} {\kern 1pt} {\kern 1pt} 3 \end{array}$$ (6) $$\Delta {T_{{\rm{ch}}}}^\prime = {P_{{\rm{diss}}}}{R_{{\rm{th}}}}({P_{{\rm{diss}}}})(1 - \exp ( - t/\tau )){\kern 1pt} {\kern 1pt} $$ (7) $${R_{{\rm{th}}}}({P_{diss}}) = {R_{{\rm{th}}0}}(1 + {k_{R1}}{\rm{exp}}({k_{R2}}{P_{{\rm{diss}}}}))$$ (8) $${C_{{\rm{th}}}} = \tau /{R_{{\rm{th}}}}{P_{{\rm{diss}}}}$$ (9) 式中,Ipk0表示最大跨导 (gm) 处的漏源电流;Mipkth是以栅压为函数的双曲正切函数倍乘因子;Vpk1、Vpk2和Vpk3用于拟合HEMTs随栅压变化的非对称“钟型”gm特性;α代表饱和电压参数;Vgseff用于表征器件表面陷阱和体陷阱效应的栅电压修正参数; $\Delta {{T'}_{{\rm{ch}}}}$ 是沟道的温度变化量,用于描述器件的自热效应;其余参数为拟合系数。
-
自热效应广泛存在于HEMTs功率器件中,引起沟道温度升高,电子迁移率降低,进而恶化器件的电性能[12]。为准确地表征该特性,常用由热阻 (Rth) 和热容 (Cth) 构成的热子电路来模拟自热效应[10-11]。通常,Rth和Cth的提取采用恒温下的脉冲Ⅳ测试来完成,但热阻往往随功耗呈非线性变化,且脉冲Ⅳ测试系统往往过于复杂和耗时[13]。故本文针对两种场板GaN HEMTs器件 (如图 1所示),采用有限元热稳态和瞬态仿真的方法,提取两种结构的热参数[14]。虽然器件的沟道温度对器件的封装形式和散热系统敏感,但可以采用等效的方法来简化器件的分析。通过在衬底底部设置适当厚度的散热材料和环境温度来模拟器件实际的工作环境。例如,本文采用1 mm厚的铜块与衬底接触,边界设为环境温度300 K,在栅指上加上一定的功耗。热仿真结构及热分布如图 4a所示,通过仿真结果可以发现,热量集中在栅指上,由于外延层非常薄,可以认为其温度为沟道温度。提取的Rth如图 4b所示,相比于单栅场板器件,双场板器件在散热方面更优,故Rth更小;表征热动态变化的Cth则变化不大。式 (8) 和式 (9) 用于拟合Rth和Cth。热时间常数τ由热瞬态仿真获得。建立的非线性热网络如图 2中的虚框所示。
-
多偏置小信号S参数用于提取器件的寄生和本征参数[15-16]。在0.1 ~ 40 GHz频率范围内,使用安捷伦矢量网络分析仪 (E8364B) 测量两种场板器件的S参数。利用低频段“Cold-FET”夹断状态的S参数提取器件的寄生电容;高频段“Cold-FET”正偏置条件下提取寄生电感和电阻参数;内部本征参数由“Hot-FET”S参数嵌寄生参数后获得。通过窄脉冲 (350 ns) 动态Ⅳ测试仪 (Auriga/Au4850),在低占空比 (0.1%)、不同静态偏置下,测量器件的Pulsed-Ⅳ特性,从而得到器件表面陷阱和体陷阱效应特性,并用Ids公式中的修正参数Vgseff来描述。得到器件各参数初值后,利用随机及梯度迭代算法,对参数进行整体优化。最终得到的两种结构器件寄生参数和部分本征参数如表 1和图 5所示,可以看出,两种结构的寄生参数值区别较小,但本征参数值区别较大,这与双场板结构引入了更大的Cgs和Cds的物理特性是一致的,同时,由于双场板结构在栅-漏方向延伸了耗尽层长度,所以与单场板相比,Cgd更小。图 5给出了非线性电容拟合结果,所用电容公式为[12]:
$${C_{{\rm{gs}}}} = {C_{{\rm{gsp}}}} + {C_{{\rm{gs}}0}}(1 + \tanh ({\phi _1}))(1 + \tanh ({\phi _2}))$$ (10a) $${\phi _1} = {M_{10}} + {M_{11}}{V_{{\rm{gs}}}} + {P_{111}}{V_{{\rm{ds}}}}$$ (10b) $${\phi _2} = {M_{20}} + {M_{21}}{V_{{\rm{gs}}}} + {M_{22}}{V_{{\rm{ds}}}}$$ (10c) $${C_{{\rm{gd}}}} = {C_{{\rm{gdp}}}} + {C_{{\rm{gd}}0}}(1 + \tanh ({\phi _3}){\kern 1pt} (1 + \tanh ({\phi _4}) + 2{P_{111}})$$ (11a) $${\phi _3} = {M_{30}} - {M_{31}}{V_{{\rm{ds}}}}$$ (11b) $${\phi _4} = {M_{40}} + {M_{41}}{V_{{\rm{gs}}}} - {P_{111}}{V_{{\rm{ds}}}}$$ (11c) 表 1 两种场板器件的模型参数对比
参数 类型 单栅场板 (G-FP) 双场板 (G-FP+S-FP) Rg/Ohm 2.895 2.768 Rd/Ohm 0.592 0.583 Rs/Ohm 0.011 0.012 Lg/pH 46.19 52.09 Ld/pH 46.57 46.66 Ls/pH 7.63 6.22 Cpg/pF 1.34e-4 6.17e-4 Cpd/pF 7.28e-4 7.34e-4 Cpgd/pF 0.048 0.023 Cds/pF 0.068 0.113
Large-signal Characterization and Modeling for Microwave Field-Plate GaN HEMTs
-
摘要: 针对栅、源两种场板氮化镓(GaN)高电子迁移率晶体管(HEMTs),提出了一种包含非线性热网络的电热大信号模型。该模型基于电热耦合理论,采用有限元电热仿真方法,提取了两种场板器件的热阻和热容参数,建立了与功耗相关的非线性热网络,并嵌入到改进的Angelov经验模型中;分析了场板结构对微波小信号特性和大信号负载阻抗的影响等。在片测试及仿真结果表明,针对两种场板GaN HEMTs器件,在0~40 GHz频带内,该模型能较精确地预测S参数、输出功率(Pout)、增益(Gain)和功率附加效率(PAE)等参数;为成功地完成电路设计,提供了较为精确的电热大信号模型。Abstract: An electro-thermal large-signal model including a nonlinear thermal network for Gallium Nitride high electron mobility transistors (GaN HEMTs) with gate and source field plates is presented in this paper. This model including the nonlinear thermal network with respect to power dissipation is embedded in the improved Angelov model. Based on the electro-thermal principle, the thermal resistance and capacitance for the two field plates of the devices are identified by utilizing the electro-thermal finite element method (FEM) simulations. And the characteristics of small signal and load impedance for the two devices with different field plates have been analyzed in microwave frequency range. Accurate predictions of the quiescent currents, S-parameters up to 40 GHz, and large-signal harmonic performance for the devices with different gate peripheries have been achieved by the proposed model.
-
Key words:
- field plate /
- GaN /
- large-signal model /
- self-heating effect /
- thermal resistance
-
表 1 两种场板器件的模型参数对比
参数 类型 单栅场板 (G-FP) 双场板 (G-FP+S-FP) Rg/Ohm 2.895 2.768 Rd/Ohm 0.592 0.583 Rs/Ohm 0.011 0.012 Lg/pH 46.19 52.09 Ld/pH 46.57 46.66 Ls/pH 7.63 6.22 Cpg/pF 1.34e-4 6.17e-4 Cpd/pF 7.28e-4 7.34e-4 Cpgd/pF 0.048 0.023 Cds/pF 0.068 0.113 -
[1] PENGELLY R S, WOOD S M, MILLIGAN J M, et al. A review of GaN on SiC high electron-mobility power transistors and MMICs[J]. IEEE Transactions on Microwave Theory and Techniques, 2012, 60(6): 1764-1783. doi: 10.1109/TMTT.2012.2187535 [2] 张波, 邓小川, 陈万军, 等.宽禁带功率半导体器件技术[J].电子科技大学学报, 2009, 38(5): 618-623. http://www.juestc.uestc.edu.cn/CN/abstract/abstract975.shtml ZHANG Bo, DENG Xiao-chuan, CHEN Wan-jun, et al. Wide bandgap semiconductors for power electronics[J]. Journal of University of Electronic Science and Technology of China, 2009, 38(5): 618-623. http://www.juestc.uestc.edu.cn/CN/abstract/abstract975.shtml [3] DORA Y, CHAKRABORTY A, MCCARTHY L, et al. High breakdown voltage achieved on AlGaN/GaN HEMTs with integrated slant field plates[J]. IEEE Electron Device Letters, 2006, 27(9): 713-715. doi: 10.1109/LED.2006.881020 [4] WU Y F, MOORE M, SAXLER A, et al. 40-W/mm double field-plated GaN HEMTs[C]//64th Device Research Conference. State College, PA: IEEE, 2006: 151-152. [5] COFFIE R. Slant field plate model for field-effect transistors[J]. IEEE Transactions on Electron Devices, 2014, 61(8): 2867-2872. doi: 10.1109/TED.2014.2329475 [6] 杜江峰, 赵金霞, 伍捷, 等.具有场板结构GaN HEMT电场分布解析模型[J].电子科技大学学报, 2008, 37(2): 297-300. http://www.cnki.com.cn/Article/CJFDTOTAL-DKDX200802040.htm DU Jiang-feng, ZHAO Jin-xia, WU Jie, et al. Electric field distribution analytic model for field-plated GaN HEMT[J]. Journal of University of Electronic Science and Technology of China, 2008, 37(2): 297-300. http://www.cnki.com.cn/Article/CJFDTOTAL-DKDX200802040.htm [7] COFFIE R. Analytical field plate model for field effect transistors[J]. IEEE Transactions on Electron Devices, 2014, 61(3): 878-883. doi: 10.1109/TED.2014.2300115 [8] OPRINS H, STOFFELS S, BAELMANS M, et al. Influence of field-plate configuration on power dissipation and temperature profiles in AlGaN/GaN on silicon HEMTs[J]. IEEE Transactions on Electron Devices, 2015, 62(8): 2416-2422. doi: 10.1109/TED.2015.2439055 [9] ANGELOV I, BENGTSSON L, GARCIA M. Extensions of the Chalmers nonlinear HEMT and MESFET model[J]. IEEE Transactions on Microwave Theory and Techniques, 1996, 44(10): 1664-1674. doi: 10.1109/22.538957 [10] YUK K S, BRANNER G R, MCQUATE D J. A wideband multiharmonic empirical large-signal model for high-power GaN HEMTs with self-heating and charge-trapping effects[J]. IEEE Transactions on Microwave Theory and Techniques, 2009, 57(12): 3322-3332. doi: 10.1109/TMTT.2009.2033299 [11] WANG C S, XU Y H, YU X M, et al. An electrothermal model for empirical large-signal modeling of AlGaN/GaN HEMTs including self-heating and ambient temperature effects[J]. IEEE Transactions on Microwave Theory and Techniques, 2014, 62(12): 2878-2887. doi: 10.1109/TMTT.2014.2364821 [12] BENBAKHTI B, SOLTANI A, KALNA K, et al. Effects of self-heating on performance degradation in AlGaN/GaN-based devices[J]. IEEE Transactions on Electron Devices, 2009, 56(10): 2178-2185. doi: 10.1109/TED.2009.2028400 [13] FLORIAN C, SANTARELLI A, CIGNANI R, et al. Characterization of the nonlinear thermal resistance and pulsed thermal dynamic behavior of AlGaN-GaN HEMTs on SiC[J]. IEEE Transactions on Microwave Theory and Techniques, 2013, 61(5): 1879-1891. doi: 10.1109/TMTT.2013.2256146 [14] WANG J H, WANG X H, PANG L, et al. Modeling, simulation and analysis of thermal resistance in multi-finger AlGaN/GaN HEMTs on SiC substrates[J]. Chinese Physics Letters, 2012, 29(8): 088502. doi: 10.1088/0256-307X/29/8/088502 [15] CHEN G, KUMAR V, SCHWINDT R S, et al. A low gate bias model extraction technique for AlGaN/GaN HEMTs[J]. IEEE Transactions on Microwave Theory and Techniques, 2006, 54(7): 2949-2953. doi: 10.1109/TMTT.2006.877047 [16] CRUPI G, XIAO D P, SCHREURS D M M-P, et al. Accurate multibias equivalent-circuit extraction for GaN HEMTs[J]. IEEE Transactions on Microwave Theory and Techniques, 2006, 54(10): 3616-3622. doi: 10.1109/TMTT.2006.882403 [17] 徐跃杭, 国云川, 徐锐敏, 等. SiC MESFET非线性模型及其嵌入研究[J].电子科技大学学报, 2010, 39(3): 443-446. http://www.juestc.uestc.edu.cn/CN/abstract/abstract1126.shtml XU Yue-hang, GUO Yun-chuan, XU Rui-min, et al. Modeling and embedding of SiC MESFET nonlinear model[J]. Journal of University of Electronic Science and Technology of China, 2010, 39(3): 443-446. http://www.juestc.uestc.edu.cn/CN/abstract/abstract1126.shtml