-
谐振腔滤波器可作为独立器件[1-2]或多工器的一部分。多工器通过共用单根天线,用于多频率段通信的微波通信系统,它由多个信道滤波器构成,是微波系统的重要器件,通过谐振腔之间不同的耦合可实现滤波器及多工器的设计。由谐振腔之间的耦合系数构成一个N阶的耦合矩阵M(N是谐振腔的个数),根据多工器或滤波器的指标确定M称为综合,文献[3]是滤波器综合的经典技术。而对于多工器,由于构成多工器的信道滤波器之间相互影响,每个信道滤波器不能根据指标直接使用经典技术[3]综合。为实现多工器综合,基于优化法[4-7]及分析法[8-9]近年被提出,优化法通常依赖于待优化参数初始值的选择。文献[8]提出了一种新型结构多工器,该结构通过一个公共谐振腔与每个信道滤波器的第一个谐振腔耦合,称为星型结多工器,并且基于多项式综合了该类多工器。文献[9]基于相位倒向器变换技术(phased-inverter to frequency-invariant reactance inverter transformation)综合了星型结多工器。在国内,未见有报道此类多工器的综合与设计。本文提出一种线性频率变换,并利用已有的技术[3, 8]综合星型结多工器,并给出整个多工器的耦合矩阵构造方法,推导多工器的S参数及群时延与耦合矩阵之间的关系。根据指标综合出的耦合矩阵可作为星型结多工器设计的依据,如三工器[10]。
-
图 1a给出了本文要综合的星型结多工器的结构。第k个信道滤波器的S参数为:
$$ {\kern 1pt} {\kern 1pt} \begin{array}{*{20}{c}} {S_{k, 11}^{} = \frac{{{F_k}(s)}}{{{E_k}(s)}}, {\kern 1pt} {\kern 1pt} {\kern 1pt} S_{k, {\kern 1pt} 21}^{} = \frac{{{{P'}_k}(s)}}{{{E_k}(s)}} = \frac{{{p_{0k}}{P_k}(s)}}{{{E_k}(s)}}}\\ {{\kern 1pt} {\kern 1pt} k = 1, 2, 3, \cdots, {N_c}} \end{array} $$ (1) 式中,s是归一化的复频率域,与归一化频率域$ \mathit{\Omega} $的关系为$ s = {\rm{j}}\mathit{\Omega} $;$ {F_k} $、$ {P_k} $、$ {E_k} $的根分别代表第k个信道滤波器的反射零点,传输零点及极点;$ {N_c} $为多工器信道的总个数。
有Nc+1个端口多工器的S参数可用多项式表示为:
$$ \begin{array}{l} {S_{11}} = \frac{{U'(s)}}{{D(s)}} = \frac{{{u_0}U(s)}}{{D(s)}}, {\kern 1pt} {\kern 1pt} {\kern 1pt} {S_{p1}} = \frac{{{{T'}_p}(s)}}{{D(s)}} = \frac{{{t_{0p}}{T_p}(s)}}{{D(s)}}{\kern 1pt} {\kern 1pt} \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;p = 2, 3, \cdots, {N_c} + 1 \end{array} $$ (2) 式中,U(s)、D(s)的根分别代表多工器在端口1(作为输入端口)处的反射零点和极点,其阶数等于多工器谐振腔的总个数N,最高阶的系数均为1;$ {T_p}(s) $表示端口1与端口p之间的传输多项式;$ {u_0} $、$ {t_{0p}} $分别代表多项式$ U'(s) $、$ {T'_p}(s) $最高项的系数。
多工器的综合在归一化频率$ \mathit{\Omega} $或s域中进行。图 1b给出了实际频率f域到$ \mathit{\Omega} $域的变换关系。$ {f_{k{\rm{L}}}} $、$ {f_{k{\rm{H}}}} $分别代表多工器第k个信道滤波器的通带的下边频点和上边频率点。归一化域的边频率点$ {\mathit{\Omega} _{\;k1}} $、$ {\mathit{\Omega} _{\;k2}} $分别对应$ {f_{k{\rm{L}}}} $、$ {f_{k{\rm{H}}}} $。为计算式(1) 每个信道滤波器的特征多项式,提出了一种从$ \mathit{\Omega} $域至$ \mathit{\Omega} $域的线性频率变换为:
$$ \mathit{\Omega} = {a_k}\mathit{\Omega} ' + {b_k}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} $$ (3) 式中,$ {a_k} = \frac{{{\mathit{\Omega} _{\;k2}} - {\mathit{\Omega} _{\;k1}}}}{2} $;$ {b_k} = \frac{{{\mathit{\Omega} _{\;k2}} + {\mathit{\Omega} _{\;k1}}}}{2} $;k表示弟k个信道滤波器。利用图 1c所示的特殊边频点的对应关系,确定系数$ {a_k} $、$ {b_k} $。
根据多工器第k个信道滤波器的阶数$ {n_{pk}} $,回波损耗$ {R_{Lk}} $以及传输零点位置可利用经典的滤波器综合技术[3]获得$ \mathit{\Omega} ' $域滤波器的多项式,然后利用频率变换式(3) 获得式(1) 中的多项式。获得的式(1) 中的多项式,可为计算式(2) 中的多项式提供好的初始值,再利用文献[8]中的迭代技术获得式(2)。
-
本文的多工器的综合过程为:1) 利用1.1节中提出的方法,获得式(1) 中每个信道滤波器初始的多项式。2) 利用文献[8]中的迭代获得式(2) 中多工器的多项式。3) 进一步获得式(1) 中每个信道滤波器的多项式,此时获得式(1) 中的多项式已考虑多工器中各个信道滤波器的相互影响。4) 利用过程3) 中获得的信道滤波器多项式,根据文献[3]中的技术获得第k个信道滤波器的$ {n_{pk}} + 2 $阶耦合矩阵,记为$ {\mathit{\boldsymbol{M}}_k} $。5) 由过程4) 获得的$ {\mathit{\boldsymbol{M}}_k} $构造出整个多工器的耦合矩阵M。在Matlab程序中获得M及各端口处归一化阻抗的主要过程如图 2所示。
M是归一化的耦合矩阵,为实现多工器的设计必须利用下式对M去归一化:
$$ \begin{array}{*{20}{c}} {{K_{i{\kern 1pt} j}} = {F_{BW}}M(i, {\kern 1pt} {\kern 1pt} {\kern 1pt} j), {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} i \ne j, {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} i, j = 1, 2, \cdots, N{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} }\\ {{\kern 1pt} {Q_{e{\kern 1pt} a}} = \frac{1}{{{F_{BW}}{R_P}}}, {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} p = 1, {\kern 1pt} {\kern 1pt} 2, {\kern 1pt} {\kern 1pt} 3, \cdots, {N_c} + 1}\\ {{f_{0{\kern 1pt} i}} = \frac{{{f_0}\sqrt {{K_{ii}}^2 + 4} - {f_0}{K_{ii}}}}{2}{\kern 1pt} {\kern 1pt} }\\ {{\kern 1pt} {\kern 1pt} {\kern 1pt} {K_{i{\kern 1pt} i}} = M(i, i){F_{BW}}, {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} i = 1, 2, \cdots, N} \end{array} $$ (4) 式中,$ {F_{BW}} $是多工器的相对带宽;$ {K_{i{\kern 1pt} j}} $表示谐振腔i与j之间的耦合;$ {f_{0{\kern 1pt} i}} $是谐振腔i的谐振频率;$ {Q_{e{\kern 1pt} a}} $是端口p处编号为a谐振腔的外部Q值。式(4) 的推导综合参考了滤波器去归一化公式[11]。
-
多工器的S参数使用N阶的耦合矩阵M用下式计算:
$$ \begin{array}{*{20}{c}} {{S_{pq}} = - 2{\rm{j}}\sqrt {{R_p}{R_q}} {{[{\mathit{\boldsymbol{A}}^{-1}}]}_{ab}}}\\ {p \ne q, p = 2, 3, 4, \cdots, {N_c} + 1;q = 2, 3, 4, \cdots, {N_c} + 1}\\ {{S_{11}} = 1 + 2{\rm{j}}{R_1}{{[{\mathit{\boldsymbol{A}}^{-1}}]}_{11}}, {\kern 1pt} {\kern 1pt} {\kern 1pt} {S_{pp}} = 1 + 2{\rm{j}}{R_p}{{[{\mathit{\boldsymbol{A}}^{-1}}]}_{aa}}}\\ {p = 2, 3, 4, \cdots, {N_c} + 1} \end{array} $$ (5) 式(5) 的推导综合参考了文献[5, 11-12]。端口1位于谐振腔编号1的位置;端口p位于谐振腔编号a的位置;端口q位于谐振腔编号b的位置,如图 3b中,若计算S23, ,则p=2,q=3,a=6,b=13;若计算S31,则p=3,q=1,a=13,b=1。$ {R_p} $、$ {R_q} $分别是端口p和端口q处的归一化阻抗。
参考滤波器群时延归一化域的定义[12],推导出在实际频率f域多工器群时延的计算为:
$$ {\rm{delay(}}p, {\kern 1pt} {\kern 1pt} {\kern 1pt} 1{\rm{)}} = {\mathop{\rm Im}\nolimits} \left[{\frac{{\sum\limits_{k = 1}^N {{{[{\mathit{\boldsymbol{A}}^{-1}}]}_{a{\kern 1pt} k}}{{[{\mathit{\boldsymbol{A}}^{-1}}]}_{{\kern 1pt} k1}}} }}{{{{[{\mathit{\boldsymbol{A}}^{-1}}]}_{a{\kern 1pt} 1}}}}} \right]\frac{{{f_0}}}{{2{\rm{ \mathsf{ π} }}BW}}\left( {\frac{1}{{{f_0}}} + \frac{{{f_0}}}{{{f^2}}}} \right) $$ (6) 式中,$ \mathit{\boldsymbol{A}} = [\mathit{\Omega} \mathit{\boldsymbol{U}}-{\rm{j}}\mathit{\boldsymbol{R}} + \mathit{\boldsymbol{M}}]{\kern 1pt} $,[R]有$ {N_c} + 1 $个非零的耦合元素为$ {R_{1{\rm{, }}1}} = {R_1} $,$ {R_{a, a}} = {R_p} $($ p = 2, 3, \cdots, {N_c} + 1 $);U是单位矩阵。
Synthesis of Star-Junction Multiplexers
-
摘要: 提出了一种利用线性变换综合星型结多工器的方法。该方法基于线性变换综合出多工器的每个信道滤波器S参数对应的特征多项式,利用文献中已有的技术综合出多工器的N阶耦合矩阵。给出了多工器N阶耦合矩阵的构造方法,并推导了多工器S参数和群时延与N阶耦合矩阵的关系。为了验证该方法,给出了一个五工器及一个双工器的综合实例,其中双工器被进一步设计、加工与测试,测试结果与综合结果相吻合,进一步验证了该方法的准确性。Abstract: This paper presents a method for synthesizing coupled resonator multiplexers with a star-junction (an extra resonant junction in addition to the channel filters). A linear frequency transformation is proposed for the evaluation of the characteristic polynomials of the each channel filter composed of star-junction multiplexers, and then coupling matrix of overall multiplexers can be obtained by using the proposed linear frequency transformation and well-established method. The evaluation of group delay in the physical frequency f domain and S-parameters based on coupling matrix are derived. To illustrate the validation of the method, two examples, including 25-poles multiplexers and 7-poles diplexer, have been synthesized, and the 7-poles diplexer has been further designed, manufactured and measured. The measured resuts are in good agreement with the synthetic results, which further verify the accuracy of the proposed method.
-
Key words:
- coupling matrix /
- linear frequency transformation /
- multiplexers /
- star-junction /
- synthesis
-
[1] 胡皓全, 曹纪纲.新型微带交叉耦合环微波带通滤波器[J].电子科技大学学报, 2008, 37(6):875-880. http://www.cnki.com.cn/Article/CJFDTOTAL-DKDX200806022.htm HU Hao-quan, CAO Ji-gang. Novel microwave bandpass filter with microtrip cross-coupled square open-loop resonators[J]. Journal of University of Electronic Science and Technology of China, 2008, 37(6):875-880. http://www.cnki.com.cn/Article/CJFDTOTAL-DKDX200806022.htm [2] 孙守家, 吴边, 梁昌洪.新型双模方环微带带通滤波器[J].西安电子科技大学学报, 2014, 41(1):53-56. http://www.cnki.com.cn/Article/CJFDTOTAL-XDKD201401010.htm SUN Shou-jia, WU Bian, LIANG Chang-hong. Novel dual-mode square loop microstrip bandpass filter[J]. Journal of Xidian University, 2014, 41(1):53-56. http://www.cnki.com.cn/Article/CJFDTOTAL-XDKD201401010.htm [3] CAMERON R J. Advanced coupling matrix synthesis techniques for microwave filters[J]. IEEE Trans on Microwave Theory and Techniques, 2003, 51(1):1-10. doi: 10.1109/TMTT.2002.806937 [4] SKAIK T F, LANCASTER M J, HUANG F. Synthesis of multiple output coupled resonator circuits using coupling matrix optimization[J]. IET Microw Antennas Propag, 2011, 5(9):1081-1088. doi: 10.1049/iet-map.2010.0447 [5] SKAIK T F, LANCASTER M J. Coupled resonator diplexer without external junctions[J]. Journal of Electromagnetic Analysis and Applications, 2011, 3(6):238-241. doi: 10.4236/jemaa.2011.36038 [6] SKAIK T. Novel star-junction coupled-resonator multiplexer structures[J]. Progress in Electromagnetics Research Letters, 2012, 31:113-120. doi: 10.2528/PIERL12030114 [7] SHANG Xiao-bang, WANG Yi, XIA Wen-lin, et al. Novel multiplexer topologies based on all-resonator structures[J]. IEEE Trans on Microwave Theory and Techniques, 2013, 61(11):3838-3845. doi: 10.1109/TMTT.2013.2284496 [8] MACCHIARELLA G, TAMIAZZO S. Synthesis of star-junction multiplexers[J]. IEEE Trans on Microwave Theory and Techniques, 2010, 58(12):3732-3741. http://www.juestc.uestc.edu.cn/EN/abstract/abstract1579.shtml [9] ZHAO Ping, WU Ke-li. An iterative and analytical approach to optimal synthesis of a multiplexer with a star-junction[J]. IEEE Trans on Microwave Theory and Techniques, 2014, 62(12):3362-3369. doi: 10.1109/TMTT.2014.2364222 [10] TANG C W, CHEN M G. Packaged microstrip triplexer with star-junction topology[J]. Electronics Letters, 2012, 48(12):699-701. doi: 10.1049/el.2012.0469 [11] HONG Jia-sheng, LANCASTER M J. Microstrip filters for RF/microwave applications[M]. New York:Wiley, 2001. [12] AMARI S. Synthesis of cross-coupled resonator filters using an analytical gradient-based optimization technique[J]. IEEE Trans on Microwave Theory and Techniques, 2000, 48(9):1559-1564. doi: 10.1109/22.869008 [13] WANG Rui, PENG Long, LI Le-zhong. Diagnosis of lossy resonator filters with source-load coupling using Y-parameters[J]. International Journal of RF and Microwave Computer-Aided Engineering, 2014, 24(6):713-717. doi: 10.1002/mmce.v24.6 [14] WANG Rui, PENG Long, LI Le-zhong. Improved diagnosis of lossy resonator bandpass filters using Y-parameters[J]. International Journal of RF and Microwave Computer-Aided Engineering, 2015, 25(9):807-814. doi: 10.1002/mmce.v25.9