-
计步器通过统计步数、速度、时间,距离等数据,测算卡路里或热量消耗,用以掌控运动量,防止运动量不足,或运动过量的一种工具。随着国民经济的发展,人们对医疗健康产品有了更多的需求,移动大数据健康医疗和智能可穿戴电子设备得到飞速发展,计步器便是其中比较有代表性的产品之一,目前最常用的计步器主要基于加速度传感器[1]。越来越多的功能化电子产品被应用于可穿戴领域,但是这些功能的实现在为人们的日常生活提供便利时,也让产品的能源问题变得愈加突出。虽然这些器件的能量需求并不大,但是目前的电源难以满足器件的长期持续工作,续航能力亟待提高,所以开发一种低耗电,甚至是不耗电的传感器件十分重要。
摩擦纳米发电机的出现[2-4]为解决医疗电子器件以及可穿戴器件的能源问题提供了全新的方案,如自驱动心脏起搏器[5]、可降解生物能源器件[6]。纳米发电机在不需要电源的情况下可直接感知所承受的压力,产生的电信号和其所受的压强以及压强的变化速率直接相关,因此可以作为一种主动式传感器[7-8],这种新一代传感技术已经被用于血压测试[9]、流体流动速度测试[10]、汽车速度和流量检测[11]等领域。本文采用摩擦发电技术,设计了一种自驱动计步传感器并对其性能进行了测试研究。
-
在施加外力的情况下,两个摩擦层相互接触,摩擦效应使表面发生电荷转移。摩电序的不同导致负电荷从铝片表面注入到聚酰亚胺中,铝片呈现出正电性,聚酰亚胺呈现出负电性,随着两个摩擦层发生相对运动,两个电极间伴随着产生电势差,该电势差可用如下方程表示[12]:
$$ V=\sigma d/{{\varepsilon }_{0}} $$ (1) 式中,σ表示摩擦电荷密度;ε0表示真空介电常数;d为摩擦层间的距离。整个过程如图 2所示。简单来说,当人步行时,鞋与地面接触,脚和地面对鞋垫及植入鞋垫的计步器产生挤压,器件输出一个正的电压,当鞋离开地面时压力释放,摩擦层相互分离器件输出一个负的电压,当脚抬至最高点向下踏步时器件再一次受到挤压,输出一个较小的正的电压随即压力得到释放,再一次输出一个较小的负电压,此过程即一次运动循环。电压随时间的变化情况反映了人的运动情况。
Self-Powered Pedometer Based on Triboelectric Nanogenerator
-
摘要: 基于摩擦纳米发电机原理,使用铜、铝、聚二甲基硅氧烷、聚酰亚胺等低成本易获取材料设计出一种自驱动计步传感器。无电源供应的情况下,该传感器在受测试者走动时可输出最高11 V的电压信号,跑动时输出超过40 V的电压信号。通过COMSOL软件对该传感器进行有限元分析,所得结果与实测结果有良好的一致性。所获取的信号具有良好的稳定性和重复性,通过频域分析可以准确得出步伐频率的分布情况。该传感器有望应用于下一代低耗电或完全自驱动计步器,从而在未来的移动大数据健康医疗领域和智能可穿戴电子设备领域发挥独特的作用。Abstract: A self-powered pedometer based on triboelectric nanogenerator is designed and presented. The sensor is composed of accessible and low-cost materials such as Al, Cu, polydimethylsiloxane (PDMS) and Kapton. The output voltage of the sensor can reach 11 V and 40 V when the subject with the sensor goes for a walk or run, respectively. Finite element methods is used to calculate the potential distribution of the sensor via COMSOL, and the simulation results correspond well with the experiment results. The electrical signal has good stability and repeatability. The pace frequency distribution can be precisely obtain via the frequency-domain analysis of signal character. This sensor has the potential applications in the next generation pedometer with low power consumption or even self-powered ability. This will play a unique role in the fields of health care and smart wearable electronics.
-
Key words:
- pedometer /
- self-powered /
- sensor /
- triboelectric nanogenerator
-
[1] GARCIA E, DING H, SARELA A, et al. Can a mobile phone be used as a pedometer in an outpatient cardiac rehabilitation program?[C]//2010 IEEE/ICME International Conference on Complex Medical Engineering (CME).[S.l.]:IEEE, 2010:250-253. [2] FAN F R, TIAN Z Q, WANG Z L. Flexible triboelectric generator[J]. Nano Energy, 2012, 1(2):328-334. doi: 10.1016/j.nanoen.2012.01.004 [3] WANG S, LIN L, XIE Y, et al. Sliding-triboelectric nanogenerators based on in-plane charge-separation mechanism[J]. Nano Letters, 2013, 13(5):2226-2233. doi: 10.1021/nl400738p [4] YANG Y, ZHANG H, CHEN J, et al. Single-electrode-based sliding triboelectric nanogenerator for self-powered displacement vector sensor system[J]. Acs Nano, 2013, 7(8):7342-7351. doi: 10.1021/nn403021m [5] ZHENG Q, SHI B, FAN F, et al. In vivo powering of pacemaker by breathing-driven implanted triboelectric nanogenerator[J]. Advanced Materials, 2014, 26(33):5851-5856. doi: 10.1002/adma.v26.33 [6] ZHENG Q, ZOU Y, ZHANG Y, et al. Biodegradable triboelectric nanogenerator as a life-time designed implantable power source[J]. Science Advances, 2016, 2(3):e1501478. doi: 10.1126/sciadv.1501478 [7] YANG J, CHEN J, LIU Y, et al. Triboelectrification-based organic film nanogenerator for acoustic energy harvesting and self-powered active acoustic sensing[J]. ACS Nano, 2014, 8(3):2649-2657. doi: 10.1021/nn4063616 [8] YANG P K, LIN L, YI F, et al. A flexible, stretchable and shape adaptive approach for versatile -energy conversion and self powered biomedical -monitoring[J]. Advanced Materials, 2015, 27(25):3817-3824. doi: 10.1002/adma.v27.25 [9] YANG J, CHEN J, SU Y, et al. Eardrum inspired active -sensors for self powered cardiovascular system -characterization and throat attached anti interference——voice recognition[J]. Advanced Materials, 2015, 27(8):1316-1326. doi: 10.1002/adma.201404794 [10] ZHANG H, YANG Y, ZHONG X, et al. Singleelectrode-based rotating triboelectric nanogenerator for harvesting energy from tires[J]. ACS Nano, 2013, 8(1):680-689. doi: 10.1021/nn4053292 [11] WEN X, YANG W, JING Q, et al. Harvesting broadband kinetic impact energy from mechanical triggering/vibration and water waves[J]. ACS Nano, 2014, 8(7):7405-7412. doi: 10.1021/nn502618f [12] NIU S, WANG S, LIN L, et al. Theoretical study of contact-mode triboelectric nanogenerators as an effective power source[J]. Energy & Environmental Science, 2013, 6(12):3576-3583. http://pubs.rsc.org/en/content/articlelanding/2013/ee/c3ee42571a#!divAbstract