-
随着现代卫星通信的高速发展,多载波、高阶数字调制等非恒包络调制技术的应用需要宽带、高效率和线性大功率功率放大器,行波管由于其高效率和宽带特性在星载通信中广泛应用[1],但是其强非线性产生交调失真和邻信道干扰,降低卫星通讯质量也对邻信道通信造成影响。为补偿非线性失真,多种线性化技术如基带预失真、前馈等被报道,一方面这些技术主要应用于窄带通信,如基于DSP的基带预失真的线性化系统由于复杂度和功耗难于在超过100 MHz的带宽实现[2-3],前馈系统一般带宽仅为10~100 MHz[4];另一方面,基带预失真和前馈自适应算法中需要用到高性能数字芯片,而在航天领域,高性能芯片容易受到单粒子翻转效应影响,可能引发软错误、硬错误甚至失效[5]。模拟预失真由于其电路简单易于实现、功耗低、体积小、可靠性高等优点适用于卫星通讯。
当前模拟预失真线技术利用肖特基二极管[6-7]和场效应管[8]作为非线性发生器构建行波管线性化器。由于电路各元件寄生效应等因素的影响,行波管线性化器的带宽设计是主要难点之一,如国外K波段线性化器带宽[6-7]为400 MHz,国内研制的某X波段线性化器[9]为200 MHz。本文利用双路平衡式电路结构的线性化器,能够部分消除线性化器各元件带来的寄生效应,从而扩展带宽并且有较好的驻波特性。
本文对行波管和线性化器进行建模计算优化给出预失真扩张所需的幅相关系,构建平衡式双路线性化器,分析其矢量合成形成幅相扩张曲线的过程,最后与行波管级联测试,得到17.8 dB的三阶交调改善。
-
行波管是无记忆强非线性功率放大器,设其输入信号为:
$$ x\left( t \right) = r\left( t \right)\cos \left[{{\omega _0}t + \phi \left( t \right)} \right] $$ (1) 式中,ω0为载波频率;r(t)和ϕ(t)分别为调制包络和相位。由Saleh模型[10],其相应的输出信号可写为:
$$ y\left( t \right) = A\left[{r\left( t \right)} \right]\cos \left\{ {{\omega _0}t + \phi \left( t \right) + \mathit{\Phi} \left[{r\left( t \right)} \right]} \right\} $$ (2) 式中,
$$ \left\{ \begin{gathered} A\left[{r\left( t \right)} \right] = \frac{{{\alpha _a}r\left( t \right)}}{{1 + {\beta _a}{r^2}\left( t \right)}} \hfill \\ \mathit{\Phi} \left[{r\left( t \right)} \right] = \frac{{{\alpha _\varphi }{r^2}\left( t \right)}}{{1 + {\beta _\varphi }{r^2}\left( t \right)}} \hfill \\ \end{gathered} \right. $$ (3) 式中,${\alpha _a}, {\beta _a}, {\alpha _\varphi }, {\beta _\varphi } $是行波管Saleh模型的参数。
利用级联网络理论,推导出线性化器的理想预失真特性AM-AM和AM-PM,其模型为:
$$ \begin{gathered} r\left( t \right) = \left\{ \begin{gathered} \frac{{{\alpha _a}-\sqrt {{\alpha _a}^2-4{\beta _a}{\rho ^2}\left( t \right)} }}{{2{\beta _a}\rho \left( t \right)}}, \;\;\;\;0 < \rho \left( t \right) \leqslant {G_s} \hfill \\ {G_s}, {G_s} \leqslant \rho \left( t \right) < \infty \hfill \\ \end{gathered} \right. \hfill \\ \theta \left( t \right) = \frac{{-{\alpha _\phi }{{\left( {{\alpha _a} - \sqrt {{\alpha _a}^2 - 4{\beta _a}{\rho ^2}\left( t \right)} } \right)}^2}}}{{4{\rho ^2}\left( t \right)\beta _a^2 + {\beta _\phi }{{\left( {{\alpha _a} - \sqrt {{\alpha _a}^2 - 4{\beta _a}{\rho ^2}\left( t \right)} } \right)}^2}}} \hfill \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;0 \leqslant \rho \left( t \right) \leqslant \infty \hfill \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;{G_s} = \frac{1}{{\sqrt {{\beta _a}} }} \hfill \\ \end{gathered} $$ (4) 式中,ρ(t)是线性化器输入电压;r(t)是线性化器输出电压;θ(t)是线性化器相移。
为简化三阶交调的计算量,同时不降低线性化器非线性计算精度,线性化器非线性特性通过幂级数展开为五次复系数多项式:
$$ {v_{{\rm{in}}}} = {g_1}{A_{{\rm{in}}}} + {g_3}A_{{\rm{in}}}^3 + {g_5}A_{{\rm{in}}}^5 $$ (5) 利用最小方差[11]曲线拟合可以得到g1, g3, g5的复系数。利用行波管正交模型[10]计算级联线性化器和行波管的三阶交调并优化得到匹配行波管的线性化器增益扩张和相位扩张为3.9 dB和37°。优化后仿真的三阶交调如图 1所示。而增益扩张和相位扩张偏离最优值后,三阶交调迅速恶化,说明线性化器需要在带内保持非线性扩张的一致性才能在一定带宽下有效地改善行波管非线性。
-
线性化器由输入输出3 dB电桥或功分器、移相器、衰减器和非线性发生器构成,原理框图如图 2所示。单载波下令输入信号为:
$$ {V_{{\rm{in}}}} = V\cos \left( {\omega t} \right) $$ 经3 dB电桥分为线性支路和非线性支路,非线性发生器由肖特基二极管产生预失真非线性,线性支路经移相器和衰减器,改变其幅度和相位,匹配线性支路和非线性支路的幅度和相位,使上下支路幅度和相位处于一定的关系,合成后形成幅度和相位非线性扩张。
不影响计算结论,可假设线性化器的3 dB电桥为理想无插损器件,L为线性支路的插损,VLin为线性化器框图中线性支路的输出信号,为输入幅度、相移和群时延的函数:
$$ {V_{{\rm{Lin}}}} = f\left( {v, \theta, t} \right) = \frac{{\sqrt 2 }}{2}VL\cos \left( {\omega t + \theta } \right) $$ (6) VNON为非线性支路的输出信号,可写为:
$$ \begin{gathered} {V_{{\rm{NON}}}} = f\left( {\alpha v, \theta + \Delta \theta, t + \Delta t} \right) = \hfill \\ \;\;\;\;\;\;\;\;\;\frac{{\sqrt 2 }}{2}\alpha LV\cos \left( {\omega t + \theta + \Delta \theta } \right) \hfill \\ \end{gathered} $$ (7) 式中,α和Δθ为非线性与线性支路的幅度和相位差,由肖特基二极管组成的非线性发生器、衰减器和移相器产生。
其矢量合成输出信号为:
$$ \begin{gathered} {V_{{\rm{out}}}} = {V_{{\rm{Lin}}}}- {V_{{\rm{NON}}}} = \hfill \\ \frac{{\sqrt 2 }}{2}VL\left[{\cos \left( {\omega t + \theta } \right)-\alpha \cos \left( {\omega t + \theta + \Delta \theta } \right)} \right] \hfill \\ \end{gathered} $$ (8) 利用三角函数变换,式(8)经变换可得:
$$ {V_{{\rm{out}}}} = GV\left[{\cos \left( {\omega t + \theta + \phi } \right)} \right] $$ (9) 式中,G和ϕ是线性化器矢量合成输出信号的增益和相移,且:
$$ G = \frac{{\sqrt 2 }}{2}L\sqrt {1 + {\alpha ^2} + 2\alpha \cos \Delta \theta } $$ (10) $$ \phi = \arctan \frac{{\alpha \sin \Delta \theta }}{{1-\alpha \cos \Delta \theta }} $$ (11) 两信号矢量合成,其合成如图 3所示。可以看到以线性支路为参考,随着输入功率的增加,非线性支路的信号VNON(Low)被压缩为VNON(High),而经过矢量信号合成,输出结果Vout(High)的幅度和相位大于Vout(Low),从而实现了幅度和相位的扩张。
线性支路和非线性支路之间的幅度差α和相差Δθ的函数,如图 4所示。
由图 4可以看到随着输入信号的增加,非线性支路分量幅度α变小,输出信号幅度和相位增加,实现了线性化器的增益和相位扩张。为获得3.9 dB的增益扩张和37°的相位扩张,可选取两路相位差为10~30°附近,可获得最佳的线性化器非线性扩张性能。
带内非线性扩张的一致性是获得满意的宽带三阶交调改善的关键。由式(9)~式(11),输出信号非线性扩张一致性与线性支路和非线性支路的幅度差α和相位差Δθ相关,而与线性支路和非线性支路的平坦度无关。
虽然线性化器的寄生参数恶化其线性支路和非线性支路的平坦度,而只要保证线性支路和非线性支路的一致的频带特性,也可以得到较好的宽带线性化改善效果。本文利用对称平衡结构,使线性化器各元件带来的寄生效应在两支路的矢量信号合成中对消,从而在宽带下得到良好的带内一致性。
-
本文的线性化器由输入输出3 dB电桥或功分器、移相器、衰减器和非线性发生器构成。输入信号经3 dB电桥分为线性支路和非线性支路,非线性发生器由肖特基二极管或FET产生预失真非线性,线性支路经移相器和衰减器,改变其幅度和相位,匹配线性支路和非线性支路的幅度和相位,使上下支路幅度和相位处于一定的关系并合成后形成幅度和相位非线性扩张。两个支路都连到输入输出3 dB电桥上形成平衡结构。平衡结构可以改善线性化器的驻波,线性化器由图 5所示,其在18 mm×6 mm的陶瓷基片上加工而成,介电常数为9.9,厚度为10 mil。肖特基二极管为Agilent的HSCH-5332,用于衰减器的PIN二极管为skyworks的HPND4005。用于移相器的超突变结变容二极管是skyworks的SMV2019,形成大约60°的相位调节能力。
New Broadband TWT Amplifier Linearizer Design
-
摘要: 现代卫星通讯利用非恒包络数字调制技术,需要高效宽带线性功率放大器。由于行波管高效率和宽带特性广泛应用于卫星通讯中,但是其强非线性造成带外失真和带内干扰影响通讯质量。模拟预失真由于其电路简单易于实现、低功耗、小体积、高可靠性等优点适用于卫星通讯。该文介绍一种宽带行波管线性化器设计,扩展带宽达到1.2 GHz,频率范围19.8~21.0 GHz。测试结果显示该线性化器在带宽1.2 GHz内,非线性可以在幅度扩张2~5 dB,相位扩张20~50°内调整,双音测试时,输入双音信号功率回退6 dB时与行波管级联测试后三阶交调改善17.8 dB,取得很好的改善效果。Abstract: The modern satellite communication uses non-constant envelope digital modulation techniques and thus demands for the high efficiency, wideband linear high-power amplifiers. The travelling wave tube (TWT) amplifier is widely used in digital wireless communication systems because of its high power efficiency and broadband, but its strong nonlinear characteristic generates intermodulation distortion, which degrades the data quality of transmitted signal and causes interference in adjacent channels. The current techniques such as baseband prediction and feedforward technique cannot achieve wideband greater than 1 GHz, and they are too complex to be used on satellite. This paper presents a broadband predistortion TWT linearizer. A frequency bandwidth of 1.2 GHz has been demonstrated with a K-band TWTA between 19.8 GHz and 21.0 GHz. The measurement result shows that the linearizer delivers about 2 dB to 5 dB of gain expansion and 20-50 degrees phase shift expansion. And the cascaded LTWTA shows good nonlinearity improvement of 17.8 dB at 6 dB input power back off point.
-
[1] CUIGNET E, TONELLO E, MAYNARD J, et al. Very high efficiency dual flexible TWTA, a flexible concept allowing to deal with performances and schedule constraints of telecommunication payloads[C]//Vacuum Electronics Conference (IVEC). Paris:IEEE, 2013. [2] ALLEN K, ROBERT G, ROGER D. Truly wideband linearization[J]. IEEE Microwave Magazine, 2009, 10(7):20-27. doi: 10.1109/MMM.2009.934688 [3] FENG Xiao-wen, BRUNO F, ANNE-SOPHIE D, et al. Digital predistortion technique based on non-uniform MP model and interpolated LUT for linearising Pas with memory effects[J]. Electronics Letters, 2014, 50(24):1882-1884. doi: 10.1049/el.2014.2130 [4] GHADAM A, BURGLECHNER S, GOKCEOGLU A H, et al. Implementation and performance of DSP-oriented feedforward power amplifier linearizer[J]. IEEE Transactions on Circuits and Systems, 2012, 59(2):409-425. doi: 10.1109/TCSI.2011.2163890 [5] 薛海红, 王群勇, 陈冬梅, 等.航空电子设备NSEE试验评价方法[J].北京航空航天大学学报, 2015, 41(10):1894-1901. http://www.wenkuxiazai.com/doc/979089d7a5e9856a571260a5.html XUE Hai-hong, WANG Qun-yong, CHEN Dong-mei, et al. Neutron single event effects testing and evaluation method for avionics[J]. Journal of Beijing University of Aeronartics and Astronautics, 2015, 41(10):1894-1901. http://www.wenkuxiazai.com/doc/979089d7a5e9856a571260a5.html [6] JEONG H Y, PARK S K, RYU N S, et al. A design of k-band predistortion linearizer using reflective schottky diode for satellite TWTAs[C]//Gallium Arsenide and Other Semiconductor Application Symposium. Paris:IEEE, 2013:597-600. http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=1637289 [7] BERA S C, KUMAR V, SINGH S, et al. Temperature behavior and compensation of diode-based pre-distortion linearizer[J]. IEEE Microwave and Wireless Components Letters, 2013, 23(4):211-213. doi: 10.1109/LMWC.2013.2249055 [8] ALLEN K, ROGER D. Characteristics and modeling of passive MESFETs for non-linear control applications[C]//Microwave Symposium Digest. San Diego, USA:IEEE, 1994:437-440. [9] 胡欣, 王刚, 王自成, 等.一种场效应管预失真电路对改善行波管非线性的作用[J].电子与信息学报, 2011, 33(4):951-955. http://www.cqvip.com/QK/91130A/201104/37318217.html HU Xin, WANG Gang, WANG Zi-cheng, et al. Improvement of TWT nonlinearity with a field effect transistor predistortion circuit[J]. Journal of Electronics & Information Technology, 2011, 33(4):951-955. http://www.cqvip.com/QK/91130A/201104/37318217.html [10] ADEL A, SALEH M. Frequency-independent and frequency-dependent nonlinear models of TWT amplifiers[J]. IEEE Transactions on Communications, 1981, 29(11):1715-1720. doi: 10.1109/TCOM.1981.1094911 [11] ELDAR Y C. Universal weighted MSE improvement of the least-squares estimator[J]. IEEE Transactions on Signal Processing, 2008, 56(5):1788-1800. doi: 10.1109/TSP.2007.913158 [12] VILLEMAZET J F, PERREL M, BROUSSE D, et al. New wide band advanced predistortion lineariser for space applications[C]//Microwave Conference. Munich, Germany:IEEE, 2013:44-47.