Abstract:
In smart grid, distributed energy resources are flexible and able to support the fast-changing wireless charging demand from electric vehicles. An iterative double auction algorithm is employed to match power supply and demand for the wireless charging market, in which distributed energy resources act as power sellers, and aggregators that aggregate charging demands of electric vehicles act as power buyers. Buyers and sellers offer prices based on the principle of self-utility maximization. An agent, as an auctioneer, determines power allocation and payment according to the offered prices, and it can maximize the total utility while the private information of buyers and sellers is unknown. Simulation results show that the algorithm can maximize the total benefit of supply and demand at a fast convergence speed, ensuring the efficiency of power allocation between electric vehicles and distributed energy resources.