-
近年来不断曝光的监控窃听丑闻和用户隐私泄露事件加剧了公众和社会各界对于网络信息安全的担忧[1]。“棱镜门”、“12306”用户信息外泄、“京东商城”盗号风波等泄露大量敏感信息和私密数据事件,更加表明我国在信息安全所面临的危机[2]。现有的经典通信加密方式是通过构造巨大的运算量,将信息以“密文”形式传输,其安全性由密码算法的计算复杂度来保证[3]。量子计算技术的出现,颠覆了经典密码学的理念,将量子计算机和量子Shor算法结合[4],可以实现将经典密码学安全性这个NP问题变为P问题。量子通信利用量子叠加态和量子纠缠等基本原理实现信息传输,由于量子不可分割、状态不可克隆、探测瞬间坍塌的特性,将其作为信息载体便可以实现抵御任何窃听的密钥分发,凭借传输高效和绝对安全等特点,成为了保障网络信息安全的终极武器[5]。
量子通信主要分为量子密钥分发(key distribution, KD)和量子隐形传态(quantum teleportation, QT)[6]。QT的核心资源是量子纠缠,利用量子纠缠分发与量子联合测量技术,把一个未知量子态传输到遥远的地方,实现量子态的空间转移,无需传输物理载体本身,具有可靠性高、通信复杂度低、资源节省等优势[7-8]。物理系统中的噪声会加速量子退相干的不断增长,同时,与相干性具有强烈依赖关系的量子纠缠也会出现衰减、甚至突然死亡[9-10]。目前关于噪声下量子隐形传态的研究,大部分都是基于单自由度的局域独立噪声环境,分别构造不同量子态的免疫噪声模型,进行简单超密编码和量子态纠缠分发。存在问题是:没有一个统一免疫噪声的高保真纠缠量子隐形传态通道框架,无法刻画在局域独立和局域共同两种模式下不同量子噪声信道系统的纠缠演化特性。针对纠缠突然死亡发生的原因和纠缠演化模型刻画比较困难,未建立起实时性和自适应性的动态切换免疫噪声模型。而且,现有的信道容量并未达到理论上的值,并且信道利用率低。再者,测量方法是基于单自由度的,只能传输单个自由度的量子状态。在基础理论层面,光子的多自由度特性,如波长、动量、自旋和轨道角动量等,在量子物理体系中呈现出的非定域、非经典的强关联性显著关系,动摇了量子隐形传态理论中的单一自由度独立性假设[11]。
噪声中量子隐形传态协议研究是当前的国际研究热点。本文从噪声中的量子纠缠演化与免疫噪声模型、量子信道容量与编码和量子体系隐形传态机制这三方面,对免疫噪声的量子隐形传态协议的相关工作及需要进一步研究的问题进行综述。
-
量子噪声和量子纠缠具有密切联系,量子噪声常常导致量子纠缠的衰减甚至死亡。早期量子隐形传态处理过程的研究都是在理想环境中进行的,没有关注噪声对量子隐形传态的影响,直到1995年,文献[12-13]分别在研究量子计算的可行性问题时,发现有高度相干的系统才可以实现量子计算,噪声问题因此被重视。随后,学者对不同的量子噪声模型下的系统进行了大量的研究,但仅局限于采用可纠错编码[14]和寻找量子无退相干自由子空间[15],来抵消噪声对系统的影响。2004年,文献[16]在研究双量子比特纠缠系统在噪声退相干过程中的纠缠演化时,发现非局域的纠缠衰减过程可以快于局域的退相干衰减过程,且量子纠缠可以在有限时间内消亡,即出现纠缠突然死亡现象。
最简单的方式是以汉密尔顿函数(Hamiltonian)表示该模型:$ {{H}_{\rm{tot}}}={{H}_{\rm{at}}}+{{H}_{\rm{int}}}+{{H}_{\rm{cav}}} $,其中Hat、Hcav、Hint分别表示两个原子之间纠缠的汉密尔顿函数。
$$ \begin{array}{l} {H_{{\rm{at}}}} = \frac{1}{2}{\omega _A}\mathit{\boldsymbol{\sigma }}_Z^A + \frac{1}{2}{\omega _B}\mathit{\boldsymbol{\sigma }}_Z^B\\ {H_{{\rm{cav}}}} = \sum\limits_k {{\omega _k}} a_k^† {a_k} + \sum\limits_k {{v_k}} b_k^† {b_k}\\ {H_{{\rm{int}}}} = \sum\limits_k {(g_k^*\mathit{\boldsymbol{\sigma }}_-^Aa_k^† + {g_k}\mathit{\boldsymbol{\sigma }}_ + ^A{a_k})} + \sum\limits_k {(f_k^*\mathit{\boldsymbol{\sigma }}_-^Bb_k^† + {f_k}\mathit{\boldsymbol{\sigma }}_ + ^B{b_k})} \end{array} $$ 式中,$ {g_k}, {f_k}$为成对的常量;$ {\mathit{\boldsymbol{\sigma }}_z} $为常用的正交Pauli矩阵。
2005年,文献[17]在局部独立热库和退相位噪声环境下,通过三量子GHZ态和W态,利用量子主方程对其进行了纠缠演化的刻画,分析了各自的健壮性。GHZ态和W态分别表示如下:
$$ \begin{array}{l} |{\psi _{{\rm{GHZ}}}}\rangle = \frac{1}{{\sqrt 2 }}(|000\rangle + |111\rangle )\\ |{\psi _W}\rangle = \frac{1}{{\sqrt 3 }}(|001\rangle + |010\rangle + |100\rangle ) \end{array} $$ 2007年,文献[18]通过实验验证了纠缠死亡现象。从此,研究者采用超算符求和主方程方法,针对不同的量子噪声与不同的系统,进行了量子动力学的研究。
2010年,文献[19]采用Carvahlo相同的量子态方法,针对局域独立Pauli噪声环境进行了系统演化密度矩阵,发现了在不同的Pauli环境下,GHZ态比W态具有不同的强健性。2012年,文献[20]在局域独立多边噪声环境下,刻画了三量子比特GHZ态的系统演化密度矩阵和抵消噪声的模型。2015年,文献[21-24]提出了以4个量子比特、5个量子比特纠缠态作为量子通道的两量子比特Bell态信息传输模型。2016年,文献[25]构建了免疫联合噪声的保真量子隐形传态模型,提出了解决纠缠死亡及纠缠演化模型如图 1所示。研究联合旋转噪声和联合退相位噪声对物理量子态的影响规律,建立了以团簇态为量子载体,分别对联合旋转噪声和联合退相位噪声免疫的逻辑量子态,构造了免疫联合噪声的消相干自由子空间,使量子态经过变化后仍处于最大纠缠态,从而实现能抵抗联合噪声的保真量子隐形传态,刻画了在联合旋转噪声和联合退相位噪声下的系统幺正演化[26]。
-
量子信道能传输一般经典信息、保密信息以及量子信息,相应的,信道容量分为3类:经典容量C、私密容量P、量子容量Q。
1997年,文献[29]提出了基于量子信道的HSW定理,经典容量C($ \mathcal{N}$)满足关系:
$$ \chi (\mathcal{N}) \le C(\mathcal{N}) = \mathop {\lim }\limits_{x \to \infty } \frac{1}{n}\chi ({\mathcal{N}^{ \otimes n}}) $$ 式中,$\chi (\mathcal{N}){\rm{ = ma}}{{\rm{x}}_{\{ {p_i}, {p_i}\} }}{\chi _{\{ {p_i}, {p_i}\} }}(\mathcal{N}) $为Holevo容量。
研究者主要关注的量子容量和私密容量是从信息论发展而来的。对量子容量的研究有助于理解量子处理过程中量子纠错码的能力和效率。对私密容量的研究有助于更好地理解量子密钥分配的安全性和效率。2003年,文献[30]给出了私密容量的正规表达式及“单字母”非平下界的界定值。私密信息量定义如下:
$$ {{P}^{(1)}}(\mathcal{N}){\rm{=ma}}{{\rm{x}}_{\{{{p}_{i}}, {{p}_{i}}\}}}({{\chi }_{\{{{p}_{i}}, {{p}_{i}}\}}}(\mathcal{N})-{{\chi }_{\{{{p}_{i}}, {{p}_{i}}\}}}(\tilde{\mathcal{N}})) $$ 式中,$ \tilde{\mathcal{N}}$为信道$ \mathcal{N} $的补信道;私密容量$ P (\mathcal{N}) $满足如下关系:
$$ {{P}^{(1)}}(\mathcal{N})\le P(\mathcal{N})=\mathop {\lim }\limits_{x \to \infty }\, \frac{1}{n}{{P}^{(1)}}({{\mathcal{N}}^{\otimes n}}) $$ 量子容量简称LSD理论[31-32]。量子容量$ Q (\mathcal{N}) $定义如下并满足关系:
$$ {{Q}^{(1)}}(\mathcal{N})\le Q(\mathcal{N})=\mathop {\lim }\limits_{x \to \infty }\, \frac{1}{n}{{Q}^{(1)}}({{\mathcal{N}}^{\otimes n}}) $$ 式中,“单字母的表达式” $ {{Q}^{(1)}}(\mathcal{N}) $定义如下:
$$ {{Q}^{(1)}}(\mathcal{N})={{\max }_{\rho }}{{I}_{c}}(\rho, \mathcal{N}) $$ 其中相干信息量$ {{I}_{c}}(\rho, \mathcal{N})$定义如下:
$$ {{I}_{c}}(\rho, \mathcal{N})=H(\mathcal{N}(\rho ))-H(\tilde{\mathcal{N}}(\rho )) $$ 2004年,文献[33]采用信息论理论,证明了纠缠的可加性猜测和纠缠的超强可加性等价于量子信道最小输入熵的可加性猜测。
2007年,文献[34]最早开始研究经典网络编码的思想扩展到量子系统,探讨量子网络编码能否实现。经过研究,其结论是:在允许近似的情况下,量子网络编码是可以通过蝶形网络(如图 2所示)实现的,并且在保证保真度大于二分一的情况下,可以同时传送任何量子态,但是在没有其他外部因素的影响下,量子比特的无差错传输是不可能的。
在图 2所示的蝶形网络中,发送方S1要将未知量子态$ |{{\varphi }_{1}}\rangle $传输到接收方t1,同时发送方S1要将未知量子态$ |{{\varphi }_{2}}\rangle $传输到接收方t2,以实现量子信息的交叉传输。然而由于使用了UC克隆,使得量子信息的保真度小于1,文献[34]证明了保真度的上界为0.983。该协议中的信道均为量子信道,只传输量子信息。
2008年,文献[35]先后提出了对称信道容量(symmetric side channel capacity, ss-capacity)Qss和私密容量Pss,且给出了相应的定理和表达式。对于噪声信道$ \mathcal{N}:A\to B $,定义相干信息$ I(A\rangle B) $:
$$ I(A\rangle B):=S(B)-S(\text{AB})=-S(A|B) $$ 量子容量Qss和私密容量Pss定义如下:
$$ \begin{array}{l} {Q_{ss}}(\mathcal{N}) = \mathop {\sup }\limits_{\rho {\rm{A\tilde AF}}} \frac{1}{2}{[I(A\rangle {\rm{BF}})_\omega }-I(A\rangle {\rm{EF}}{)_\omega }]\\ {P_{ss}}(\mathcal{N}) = \mathop {\sup }\limits_{{{\{ {p_x}, |{\varphi _x}\rangle }_{{\rm{AFG}}}}\} X \to T} (I(T;{\rm{BF}}) -I(T;{\rm{EG}})) \end{array} $$ 文献[36]利用了非对称信道的优势,但没有考虑实际量子信道中由于消相干效应,最大纠缠态较难保持,且消耗较多纠缠资源。
2013年,文献[37]计算了不同的量子编码在泡利环境中的噪声容限,在去极化信道中,得到不同量子级联码的最优编码方式。同年,文献[38]基于噪声信道的强安全容量编码模型,采用信息论安全和量子随机编码理论,证明了强安全条件下的消息认证容量。
2014年~2016年,文献[39-43]利用超纠缠态易制备、易测量和易实施超密编码的特性,构建了纠缠交换的量子隐秘信道,提出了基于超纠缠交换的高效超密编码方法,有效提高了量子通信中信道利用率和容量等。之后,学者推广形成量子编码的CSS构造定理,成为经典构造量子编码的一种有效方式,且分析了在纠缠辅助情况下的量子信道容量,并得到了广泛应用[44-45]。
-
自文献[46]在1993年首次提出分离变量的量子隐形传态方案以来,因其无条件安全和及时传输量子态的特性,在理论和实验方面都得到了迅速的发展,成为量子通信领域非常热门的研究点。1994,文献[47]实验实现了文献[46]的方案,基于Bell态联合测量,实现量子状态传递:
$$ \begin{array}{l} |{\psi ^{( \pm )}}\rangle \to-|{g_a}\rangle \frac{1}{{\sqrt 2 }}{(|0\rangle _1} \mp |1{\rangle _1})\\ |{\phi ^{( \pm )}}\rangle \to-|{e_a}\rangle \frac{1}{{\sqrt 2 }}{(|1\rangle _1} \mp |0{\rangle _1}) \end{array} $$ 1996年,文献[48]提出了噪声信道上量子噪声纠缠的净化以及保真传送的方案。M为两自旋粒子的混合状态,当至少一个粒子初始处于纯单重态(pure singlet state): $ {{\psi }^{-}}={\rm{(}\uparrow \downarrow-\downarrow \uparrow \rm{)}}/{\sqrt{2}}\; $,可以实现,经过噪声信道传送以后,得到分离的状态。传送M的保真度F:$ F = \langle {\psi ^-}|M|{\psi ^-}\rangle $。
1997年,文献[49]首次成功地实现基于纠缠的量子隐形传态。1998年,文献[50-51]利用连续变量理论,分别进行具有相干特性的光场与核磁共振的量子隐形传态,被列为当年美国的十大科技进展之一。
2002年,文献[52]在局域独立量子噪声环境中,提出了保真的量子隐形传态方案,且分析了平均保真度和安全效率,开启了噪声信道上研究量子隐形传态的先河。2003年,文献[53]成功地进行了该实验。2005年,文献[54]基于压缩态的特性,在不同场模的真空状态下实现了量子隐形传态。2008年,文献[55]利用三粒子GHZ态或W态为量子信道,在局域退极化环境和独立Pauli环境下,提出了单量子比特量子隐形传态理论,创新性的发现了量子信道的选取取决于所处的噪声环境,分析得出,在局域独立Pauli噪声环境下,选定的参数不同,GHZ态和W态有不同的更适合的量子信道;在局域独立退极化噪声环境下,选择GHZ态和W态作为量子信道都可获得相同的传输效果。
2010年,文献[56]又进行了自由空间16 km的量子隐形传态实验,该实验结果成功地登上了《Nature Photonics》杂志的封面。2011年~2013年,文献[57-58]利用四粒子、二粒子Bell态、三粒子GHZ态或W态为量子信道,在局域独立高温、零温和退相位噪声环境下的量子隐形传态理论,分析了各自的保真度。
2015年,学者们利用团簇态、GHZ态等离子态,分别在局域独立的联合退相位噪声、联合转动噪声、比特翻转通道、退极化通道、振幅阻尼通道[59]、Pauli通道[60]等环境中进行了量子隐形传态,且分析了不同的纠缠度等指标。文献[61]针对连续变量量子信息,提出了非高斯纠缠态和薛定谔猫态的量子态隐形传输方案。同时,文献[61]突破单一自由度的局限,创新性地实现了多自由度下的量子隐形传态实验,为推动研究多自由度下的量子传输提供了有力的实验保证。多自由度下量子体系隐形传态机制如图 3所示。
2016年,文献[62]在噪声环境中提出并验证了量子纠缠的过度分布理论,量子纠缠的过度分布可能是实现纠缠收益的唯一途径。文献[63]在阻尼噪声中,通过调整测量的不同参数,提出了一种增强的量子隐形传态,通过部分测量和局部测量后逆转的组合可以消除消相干效应,被传送的状态可以通过以下布洛赫(Bloch)矢量特征表示:
$$ \begin{array}{c} {r_x} = \frac{{2\sin \theta \cos \phi }}{N}\sqrt {{{\bar P}_1}{{\bar P}_2}{{\bar \gamma }_1}{{\bar \gamma }_2}{{\bar P}_{{r_1}}}{{\bar P}_{{r_2}}}} \\ {r_y} = \frac{{2\sin \theta \sin \phi }}{N}\sqrt {{{\bar P}_1}{{\bar P}_2}{{\bar \gamma }_1}{{\bar \gamma }_2}{{\bar P}_{{r_1}}}{{\bar P}_{{r_2}}}} \\ {r_z} = \frac{{\cos \theta }}{N}[{{\bar P}_{{r_1}}}{{\bar P}_{{r_2}}} + {{\bar P}_1}\bar P{{\bar P}_{{r_1}}}{{\bar P}_{{r_2}}}{\gamma _1}{\gamma _2} + \\ {{\bar P}_1}{{\bar P}_2}{{\bar \gamma }_1}{{\bar \gamma }_2}-{{\bar P}_1}{{\bar P}_2}({\gamma _1}{{\bar \gamma }_2}{{\bar P}_{{r_1}}} + {{\bar \gamma }_1}{\gamma _2}{{\bar P}_{{r_2}}})] \end{array} $$ 式中:
$$ \begin{array}{c} N = {{\bar P}_{{r_1}}}{{\bar P}_{{r_2}}} + {{\bar P}_1}\bar P{{\bar P}_{{r_1}}}{{\bar P}_{{r_2}}}{\gamma _1}{\gamma _2} + \\ {{\bar P}_1}{{\bar P}_2}{{\bar \gamma }_1}{{\bar \gamma }_2} + {{\bar P}_1}{{\bar P}_2}({\gamma _1}{{\bar \gamma }_2}{{\bar P}_{{r_1}}} + {{\bar \gamma }_1}{\gamma _2}{{\bar P}_{{r_2}}}) \end{array} $$ 文献[64-67]基于量子叠加和纠缠原理,利用核磁共振设备进行了一个小的应用冷冻细菌微生物量子态传输实验。文献[68]基于量子隐形传态针对未知的多量子比特状态提出了量子公钥加密协议。文献[69]研究了低维拓扑中量子隐形传态与BMW代数的关系,揭示了量子信息科学与低维拓扑结构的联系,这些研究使量子隐形传态的应用进一步广泛。
A Literature Review of the Research of Quantum Teleportation Protocols for Noise
-
摘要: 实用化量子隐形传态技术作为发展可拓展量子计算和量子网络的必经途径,在金融、政务、国防军事、远距离通信(如空间探测)等领域中大显身手,量子纠缠与超联合测量给量子隐形传态基础理论和应用技术带来了巨大挑战,同时也为理论和技术(应用)层面产生基础创新带来了契机。该文从量子纠缠演化与免疫噪声模型、量子信道容量与编码、量子隐形传态机制方面对免疫噪声的量子隐形传态协议研究进行综述,最后探讨未来的研究热点和发展趋势。Abstract: As a way to develop scalable quantum computing and quantum networks, practical quantum teleportation technology is proverbially applied in the fields of finance, government affairs, national defense and military affairs, and long-distance communication (such as space exploration). Quantum entanglement and super-joint measurement not only bring great challenges to the fundamental theory and application technology of quantum teleportation, but also bring the opportunity of fundamental innovation in theory and technology (application). In this paper, the research of quantum teleportation protocol for immune noise is summarized from the following aspects:the quantum teleportation and immune noise model, quantum channel capacity and network coding, and quantum teleportation mechanism of the immune noise of the quantum teleportation protocol. Finally, the trends of future research hotspots and development are summarized.
-
[1] HUANG Chien-cheng, FARN K J. A study on e-Taiwan promotion information security governance programs with e-government implementation of information security management standardization[J]. International Journal of Network Security, 2016, 18(3):565-578. [2] NADER S S, ROSSOUW V S, STEVEN F. Information security policy compliance model in organizations[J]. Computers & Security, 2016, 56:70-82. https://www.sciencedirect.com/science/article/pii/S0167404815001583 [3] STEFANO P, JENS E, CHRISTIAN W, et al. Advances in quantum teleportation[J]. Nature Photonics, 2015, 9(10):641-652. doi: 10.1038/nphoton.2015.154 [4] LOV K G. Quantum mechanics helps in searching for a needle in a haystack[J]. Phys Rev Lett, 1997, 79(2):325-328. doi: 10.1103/PhysRevLett.79.325 [5] HIROKI T. Quantum communication experiments over optical fiber[M]//YAMAMOTO Y, SEMBA K. Principles and Methods of Quantum Information Technologies, [s. l. ]: Springer, 2016: 53-70. [6] WANG Xi-lin, CAI Xin-dong, SU Zu-en, et al. Quantum teleportation of multiple degrees of freedom of a single photon[J]. Nature, 2015, 518(7540):516-519. doi: 10.1038/nature14246 [7] RYSZARD H, PAWEL H, MICHAL H, et al. Quantum entanglement[J]. Review of Modern Physics, 2007, 81(2):865-942. http://www.oalib.com/paper/3267685 [8] MARGHERITA Z, TANJUNG K, TOMASZ P, et al. Excessive distribution of quantum entanglement[J]. Physical Review A, 2015, 93(1):12-35. https://research.monash.edu/en/publications/excessive-distribution-of-quantum-entanglement [9] PAOLA C O, FAGNER M P, MARCELO S S. Trace-distance correlations for X, states and the emergence of the pointer basis in Markovian and non-Markovian regimes[J]. Physical Review A, 2015, 92(3):676-677. https://www.researchgate.net/profile/Fagner_De_Paula [10] ŠPIČKA V, NIEUWENHUIZEN T M, KEEFE P D Physics at the FQMT'11 conference[J]. Physica Scripta, 2012(3):1-28. http://adsabs.harvard.edu/abs/2012PhST..151a4001S [11] LEONARDO B, SAMUEL L B, STEFANO P. Quantum fidelity for arbitrary gaussian states[J]. European Physical Journal Special Topics, 2015, 160(1):225-234. https://pure.york.ac.uk/portal/en/publications/quantum-fidelity-for-arbitrary-gaussian-states(2a4f13f6-33ca-42ae-b276-7e8909a34769)/export.html [12] DIVINCENZO D P. Quantum computation[J]. Science, 1995, 270(5234):255-261. doi: 10.1126/science.270.5234.255 [13] BENNETT C H, DIVINCENZO D P. Quantum information and computation[J]. Physics Today, 1995, 48(1):247-255. [14] LIDAR D A, BACON D, WHALEY K B. Concatenating decoherence-free subspaces with quantum error correcting codes[J]. Phys Rev Lett, 1999, 82:4556. doi: 10.1103/PhysRevLett.82.4556 [15] WANG Rui-jin, LI Dong-fen, LIU Yao, et al. Two ways of robust quantum dialogue by using four-qubit cluster state[J]. International Journal of Theoretical Physics, 2015, 55(4):2110-2124. doi: 10.1007/s10773-015-2850-5.pdf [16] TING Yu, EBERLY J H. Finite-time disentanglement via spontaneous emission[J]. Physical Review Letters, 2004, 93(14):140404. doi: 10.1103/PhysRevLett.93.140404 [17] GERARDO A, ALESSIO S, FABRIZIO I. Multipartite entanglement in three-mode Gaussian states of continuous variable systems:Quantification, sharing structure and decoherence[J]. Physical Review A, 2005, 73(3):176. http://adsabs.harvard.edu/abs/2006PhRvA..73c2345A [18] ALMEIDA M P, MELO D F, HOR-MEYLL M, et al. Environment-induced sudden death of entanglement[J]. Science, 2007, 316(5824):579-582. doi: 10.1126/science.1139892 [19] SIOMAU M, STEPHAN F. Entanglement dynamics of three-qubit states in noisy channels[J]. The European Physical Journal D, 2010, 60(2):397-403. doi: 10.1140/epjd/e2010-00189-1 [20] SIOMAU M. Entanglement dynamics of three-qubit states in local many-sided noisy channels[J]. Journal of Physics B:Atomic, Molecular and Optical Physics, 2012, 45(3):035501. doi: 10.1088/0953-4075/45/3/035501 [21] LI Dong-fen, WANG Rui-jin, ZHANG Feng-li. Quantum information splitting of a two-qubit Bell state using a four-qubit entangled state[J]. Chinese Physics C, 2015, 39(4):26-30. doi: 10.1007/s10773-015-2562-x [22] WANG Rui-jin, LI Dong-fen, DENG Fu-hu. Quantum information splitting of a two-qubit bell state using a five-qubit entangled state[J]. International Journal of Theoretical Physics. 2015, 54(9):3229-3237. doi: 10.1007/s10773-015-2562-x [23] LI Dong-fen, WANG Rui-jin, ZHANG Feng-li, et al. Quantum information splitting of arbitrary two-qubit state by using four-qubit cluster state and Bell-state[J]. Quantum Information Processing, 2015, 14(3):1103-1116. doi: 10.1007/s11128-014-0906-8 [24] LI Dong-fen, WANG Rui-jin, ZHANG Feng-li, et al. Quantum information splitting of arbitrary three-qubit state by using seven-qubit entangled state[J]. International Journal of Theoretical Physics, 2015, 54(6):2068-2075. doi: 10.1007/s10773-014-2413-1 [25] WANG Rui-jin, LI Dong-fen, QIN Zhi-guang. An immune quantum communication model for dephasing noise using four-qubit cluster state. International[J]. Journal of Theoretical Physics, 2016, 55(1):609-616. doi: 10.1007/s10773-015-2698-8 [26] GAO Ting, YAN Feng-li, WANG Zhi-xi. Controlled quantum teleportation and secure direct communication[J]. Chinese Physics, 2017, 14(5):893-897. http://www.cqvip.com/qk/85823A/200505/15563485.html [27] CARUSO F, VITTORIO G, COSMO L, et al. Quantum channels and memory effects[J]. Reviews of Modern Physics, 2014, 86(4):1203-1259. doi: 10.1103/RevModPhys.86.1203 [28] MAZHAR A. Robustness of genuine tripartite entanglement under collective dephasing[J]. Chinese Physics Letters, 2015, 32(6):060302. doi: 10.1088/0256-307X/32/6/060302 [29] BENJAMIN S, MICHAEL W. Sending classical information via noisy quantum channels[J]. Physical Review A, 1997, 56(1):131-138. doi: 10.1103/PhysRevA.56.131 [30] DEVETAK I. The private classical capacity and quantum capacity of a quantum channel[J]. IEEE Transactions on Information Theory, 2004, 51(1):44-55. doi: 10.1007/s00220-005-1317-6 [31] SETH L. The capacity of the noisy quantum channel[J]. Phys Rev A, 1997, 55(3):1613-1622. doi: 10.1103/PhysRevA.55.1613 [32] ZHUANG Q, ZHU E Y, SHOR P W. Additive classical capacity of quantum channels assisted by noisy entanglement[J]. Physical Review Letters, 2017, 118(20):200503. doi: 10.1103/PhysRevLett.118.200503 [33] SHOR P W. Equivalence of additivity questions in quantum information theory[J]. Communications in Mathematical Physics, 2004, 246(3):453-472. doi: 10.1007/s00220-003-0981-7 [34] HAYASHI M, IWAMA K, HAYASHI M, et al. Quantum network coding[C]//Annual Symposium on Theoretical Aspects of Computer Science. Berlin, Heidelberg: Springer, 2007: 610-621. [35] GRAEME S, JOHN A S, ANDREAS W. The quantum capacity with symmetric side channels[J]. IEEE Transactions on Information Theory, 2008, 54(9):4208-4217. doi: 10.1109/TIT.2008.928269 [36] ZAHRA S, HERMANN K, CHIARA M, et al. Optimal super dense coding over noisy quantum channels[J]. Physics, 2010, 12(30):1653-1655. http://arxiv.org/abs/1004.5573 [37] FREDERIK K, FLORIAN F, WOLFGANG D. Effective noise channels for encoded quantum systems[J]. Physical Review A, 2013, 88(4):3367-3376. http://adsabs.harvard.edu/abs/2013PhRvA..88d2305K [38] CHEN Da-jiang, QIN Zhen, MAO Xu-fei, et al. SmokeGrenade:an efficient key generation protocol with artificial interference[J]. IEEE Transactions on Information Forensics & Security, 2013, 8(11):1731-1745. http://or.nsfc.gov.cn/handle/00001903-5/482761 [39] LI Dong-fen, WANG Rui-jin, ZHANG Feng-li. Quantum information splitting of a two-qubit Bell state using a four-qubit entangled state[J]. Chinese Physical C, 2015, 39(4):26-30. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=knwl201504007&dbname=CJFD&dbcode=CJFQ [40] LI Dong-fen, WANG Rui-jin, ZHANG Feng-li. Quantum information splitting of arbitrary three-qubit state by using four-qubit cluster state and GHZ-state[J]. International Journal of Theoretical Physics, 2015, 54(4):1142-1153. doi: 10.1007/s10773-014-2310-7 [41] LI Dong-fen, WANG Rui-jin, ZHANG Feng-li, et al.Quantum information splitting of arbitrary three-qubit state by using seven-qubit entangled state[J]. International Journal of Theoretical Physics, 2015, 54(6):2068-2075. doi: 10.1007/s10773-014-2413-1 [42] LI Dong-fen, WANG Rui-jin, ZHANG Feng-li, et al. Splitting unknown qubit State using five-qubit entangled state[J]. International Journal of Theoretical Physics, 2016, 55(4):1962-1972. doi: 10.1007/s10773-015-2836-3 [43] WANG Rui-jin, LI Dong-fen, QIN Zhi-guang. An immune quantum communication model for dephasing noise using four-qubit cluster state[J]. International Journal of Theoretical Physics, 2016, 55(1):609-616. doi: 10.1007/s10773-015-2698-8 [44] KESTING F, FLORIAN F, WOLFGANG D. Effective noise channels for encoded quantum systems[J]. Physical Review A, 2013, 88(4):042305. doi: 10.1103/PhysRevA.88.042305 [45] ANTONIO D, GIULIANO B, GIUSEPPE F, et al. Information transmission over an amplitude damping channel with an arbitrary degree of memory[J]. Physical Review A, 2015, 92(6):062342. doi: 10.1103/PhysRevA.92.062342 [46] BENNETT C, GILLS B, CLAUDE C, et al. Teleporting an unknown quantum state via dual classical and einsteinpodolsky-rosen channels[J]. Physics Review Letters, 1993, 70(13):1895-1899. doi: 10.1103/PhysRevLett.70.1895 [47] DAVIDOVICH L, ZAGURY N, BRUNE M, et al. Teleportation of an atomic state between two cavities using nonlocal microwave fields[J]. Physical Review A, 1994, 50(2):R895-R898. doi: 10.1103/PhysRevA.50.R895 [48] BENNETT C, GILLES B, SANDU P, et al. Purification of noisy entanglement and faithful teleportation via noisy channels[J]. Physical Review Letters, 1996, 78(10):2031. https://static1.squarespace.com/static/54563869e4b07b34ee649b68/t/54cfa4b1e4b0aaa4b147ae7e/1422894257772/023.+PhysRevLett.76.722.pdf [49] BOUWMEESTER D, PAN Jian-wei, MATTLE K, et al. Experimental quantum teleportation[J]. Nature, 1999, 390(11):575-579. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGGQ199907003011.htm [50] BRAUNSTEIN S L, KIMBLE H J, SORENSEN Y, et al. Teleportation of continuous quantum variables[J]. Physical Review Letters, 1998, 80(4):67-75. http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=1998PhRvL..80..869B&link_type=EJOURNAL&db_key=PHY [51] FURUSAWA A, SORENSEN J L, BRAUNSTEIN S L, et al. Unconditional quantum teleportation[J]. Science, 1998, 282(5389):706. doi: 10.1126/science.282.5389.706 [52] SANGCHUL O, LEE S, LEE Hai-woong. Fidelity of quantum teleportation through noisy channels[J]. Physical Review A, 2002, 66(2):207-212. https://arxiv.org/pdf/quant-ph/0206173 [53] WARWICK P B, NICOLAS T, BEN C B, et al. Experimental investigation of continuous-variable quantum teleportation[J]. Physical Review A, 2002, 67(3):535-542. http://www.academia.edu/4306911/Experimental_investigation_of_continuous-variable_quantum_teleportation [54] NOBUYUKI T, TAKAO A, SATOSHI K, et al. Experimental demonstration of quantum teleportation of a squeezed state[J]. Physical Review A, 2005, 72(4):440-450. https://www.osti.gov/scitech/biblio/20718697 [55] EYLEE Jung, HWANG Mi-ra, JU You-hwan, et al. Greenberger-horne-zeilinger versus W states:Quantum teleportation through noisy channels[J]. Physical Review A, 2008, 78(1):3332-3335. http://adsabs.harvard.edu/abs/2008PhRvA..78a2312J [56] JIN Xian-min, REN Ji-gang, YANG Bin, et al. Experimental free-space quantum teleportation[J]. Nature Photonics, 2010, 4(6):376-381. doi: 10.1038/nphoton.2010.87 [57] HU Ming-liang. Environment-induced decay of teleportation fidelity of the one-qubit state[J]. Physics Letters A, 2011, 375(21):2140-2143. doi: 10.1016/j.physleta.2011.04.020 [58] LIANG Hua-qiu, LIU Jin-ming, FENG Shang-shen, et al. Quantum teleportation with partially entangled states via noisy channels[J]. Quantum Information Processing, 2013, 12(8):2671-2687. doi: 10.1007/s11128-013-0555-3 [59] KAUSHIK P S, JONATHAN P D, GIRISH S A. Non-Gaussian entangled states and quantum teleportation of Schrodinger-cat states[J]. Physica Scripta, 2015, 90(7):14-29. https://www.researchgate.net/publication/237197957_Non-Gaussian_entangled_states_and_quantum_teleportation_of_Schrodinger-cat_states [60] RAPHAEL F, GUSTAVO R. Fighting noise with noise in realistic quantum teleportation[J]. Physical Review A, 2015, 92(1):23-38. doi: 10.1007/978-3-319-66514-6_14 [61] TRENT M G, HERBERT J B, TZU-CHIEH W, et al. Superdense teleportation using hyperentangled photons[J]. Nature Communications, 2014, 6:7185. https://www.researchgate.net/publication/263819016_SuperDense_Teleportation_using_Hyperentangled_Photons [62] ZUPPARDO M, KRISNANDA T, PATEREK T, et al. Excessive distribution of quantum entanglement[J]. Phys Rev A, 2016, 93(1):56-67. https://research.monash.edu/en/publications/excessive-distribution-of-quantum-entanglement [63] XIAO Xing, YAO Yao, ZHONG Wo-jun, et al. Enhancing teleportation of quantum Fisher information by partial measurements[J]. Physical Review A, 2016, 93(1):23-37. doi: 10.1007/s11128-017-1561-7.pdf [64] LI Tong-cang, YIN Zhang-qi. Erratum to:Quantum superposition, entanglement, and state teleportation of a microorganism on an electromechanical oscillator[J]. Science Bulletin, 2016, 61(3):163-171. doi: 10.1007/s11434-015-0990-x [65] STEFANO P, RICCARDO L, CARLO O, et al. Fundamental limits of repeaterless quantum communications[J]. Nature Communications, 2017, 8:15043. doi: 10.1038/ncomms15043 [66] MICHAEL X C, PASCAL O V. Estimating the information rate of a channel with classical input and output and a quantum state(extended version)[C]//2017 IEEE International Symposium on Information Theory. Aachen, Germany: IEEE, 2017: 1381-1390. [67] GIUSEPPE S, ROBERTO L. Quantum approach to epistemic semantics[J]. Soft Computing, 2017, 21(6):1381-1390. doi: 10.1007/s00500-015-1781-7 [68] WU Chen-miao, LI Yang. Qubit-wise teleportation and its application in public-key secret communication[J]. Science China Information Sciences, 2017, 60(3):032501. doi: 10.1007/s11432-016-0152-4 [69] ZHANG Kun, ZHANG Yong. Quantum teleportation and Birman-Murakami-Wenzl algebra[J]. Quantum Information Processing, 2017, 16(2):52. doi: 10.1007/s11128-016-1512-8 [70] LI Dong-fen, WANG Rui-jin, ZHANG Feng-li, et al. A noise immunity controlled quantum teleportation protocol[J]. Quantum Information Processing, 2016, 15(11):4819-4837. doi: 10.1007/s11128-016-1416-7