-
场发射阵列阴极是十分理想的电子源。它依靠极强的外部电场来压抑阴极表面势垒,使势垒高度降低、宽度变窄,这样阴极内部的大量电子通过隧道效应而逸出[1-3]。场发射阵列阴极具有工作温度低、可控性强、发射电流密度大、响应迅速等优势,在微波真空器件[4-6]、医疗器件[7-9]、显微技术[10-11]、光源[12-13]等领域拥有巨大的应用前景。
为了与大规模集成电路制备工艺兼容,场发射阵列阴极通常以单晶硅片作为基底。单晶硅是一种硬而脆的半导体材料,因此,阴极在实际应用时必须通过焊接的方式将硅基底与外接金属电极(如钼)相连。目前,关于该焊接技术的相关报道很少,因此,研究场发射阴极硅基底与金属钼电极的焊接具有重要的应用价值和实际意义。
众所周知,由于硅和钎料的热胀系数有较大差别,将硅和金属电极进行直接焊接比较困难。当二者焊接在一起时,如果工艺参数选择不当,钎料容易将硅材料撕裂,从而造成焊接接头的强度大幅度降低,远不能达到焊接要求。本文旨在获得一套适用于场发射阵列阴极硅基底与钼电极焊接的工艺参数。首先利用有限元软件ANSYS对温度场和应力场进行模拟仿真,研究钎焊温度和降温速度对最大等效应力分布特性的影响。在获得了较好的工艺参数的基础上,再对该方案进行实验验证。
-
本文在ANSYS热分析中的结构单元为Solid 5。
该模块可以分析热场、电场、压电场和磁场等基本场量,并可将这些场量进行耦合求解。被焊硅基底尺寸为9 mm×9 mm×0.45 mm,钼电极尺寸为9 mm×9 mm×0.12 mm,焊料为Ag-Cu28。表 1给出了钼、硅和焊料的特性参数。
表 1 钼、硅和焊料的特性参数
材料 参数 导热系数/W·m-1·K 密度/kg·m-3 比热/J/kg-1·k 弹性模量/pa 热膨胀系数/k-1 泊松比 硅 145 2 328.3 700 1.9×1011 2.6×10-6 0.278 焊料 89.7 9 900 289 0.9×1010 10×10-6 0.350 钼 138 10 200 252.7 2.3×1011 5.2×10-6 0.274 在模拟计算中首先需要设定焊接的初始温度和最终温度。初始温度由焊接中的介质温度决定,设为25 ℃。为了尽量减小焊料由液相到固相转换过程中产生的热应力,最终温度设置为810~900 ℃,即略高于焊料的熔点(约790 ℃)。此外,因本文焊接结构的实际环境为真空,故只考虑热辐射,忽略热传导和热对流。
ANSYS一般有两种分析方式:稳态分析和瞬态分析[14]。本文采用瞬态分析,即当时间发生变化时,温度载荷随之改变。而在载荷步的选择上,论文采用渐变模式,即载荷在每个载荷子步时逐渐增加,全部载荷出现在载荷步结束时刻。
模拟中ANSYS的屈服准则为Von Mise准则,在三维主应力空间,Von Mises屈服准则满足[14]:
$$ f = \frac{{\sqrt 2 }}{2}\sqrt {{{({\sigma _1} - {\sigma _2})}^2} + {{({\sigma _2} - {\sigma _3})}^2} + {{({\sigma _3} - {\sigma _1})}^2}} \le {\sigma _s} $$ (1) 式中,σ1、σ2、σ3为正交方向上的主应力;σs为物体单向拉伸时的屈服极限;f为等效应力。一旦式(1)不成立,则物体发生屈服。
Research of Welding Stress of Field Emission Array Based on ANSYS
-
摘要: 该文基于ANSYS平台模拟了场发射阵列阴极与钼电极钎焊工艺参数对钎焊层等效应力的影响,并根据仿真结果进行了实验验证。仿真结果表明,当钎焊温度为850 ℃时,最大等效应力最小;当降温速率为23 ℃/min时,最大等效应力最大,之后随降温速度的增加而迅速减小;在降温过程中,高温区逐渐向硅基底扩展,温度沿焊缝方向呈对称分布,焊缝中心温度高,两边温度低。测试结果表明,钎焊接头组织致密,焊缝结合良好,没有裂纹和空洞等缺陷,且钎料对硅基底的影响很小。这是一种可行的、低成本的实现硅基场发射阵列阴极焊接的有效方法。Abstract: The influence of brazing parameters on the equivalent stress of welding field emission array and molybdenum electrode was simulated by ANSYS and the results of simulation were verified by vacuum brazing technique. Simulating results show that when brazing temperature was 850 ℃, it had the minimum equivalent stress. When the cooling rate was 23 ℃/min, the equivalent stress reached the maximum, and then decreased rapidly with increasing cooling rate. During the cooling process, the high temperature zone gradually extended to the silicon substrate, and the temperature distribution was symmetrical along brazing seam, in accompany with high temperature in brazing seam center and low temperature on both sides. Experimental results show that brazed joint was dense and brazing seam was well combined without any defects such as cracks and voids. Collectively, this method may be a viable and cost-effective route for welding the field emission cathode array with molybdenum electrode.
-
Key words:
- ANSYS /
- brazing /
- equivalent stress /
- field emission array /
- molybdenum
-
表 1 钼、硅和焊料的特性参数
材料 参数 导热系数/W·m-1·K 密度/kg·m-3 比热/J/kg-1·k 弹性模量/pa 热膨胀系数/k-1 泊松比 硅 145 2 328.3 700 1.9×1011 2.6×10-6 0.278 焊料 89.7 9 900 289 0.9×1010 10×10-6 0.350 钼 138 10 200 252.7 2.3×1011 5.2×10-6 0.274 -
[1] FOWLER R H, NORDHEIM L. Electron emission in intense electric fields[J]. Proceedings of the Royal Society A Mathematical Physical & Engineering Sciences, 1928, 119:173-181. doi: 10.1098/rspa.1928.0091 [2] SHOULDERS K R. Microelectronics using electron-beam-activated maching techniques[J]. Advances in Computers, 1961, 39:3504-3505. http://www.sciencedirect.com/science/article/pii/S0065245808601424 [3] SPINDT C A, BRODIE I, HUMPHREY L, et al. Physical properties of thin-film field emission cathodes with molybdenum cones[J]. Journal of Applied Physics, 1976, 47(12):5248-5263. doi: 10.1063/1.322600 [4] WEI W, ZHENG Y X, YUAN X Y, et al. Carbon nanotube field emission electron gun for traveling-wave tube[C]//2015 IEEE International Vacuum Electronics Conference. Beijing: IEEE, 2009, 4: 1-2. [5] MOREV S P, ABAN'SHIN N P, GORFINKEL B I, et al. Electron-optical systems with planar field-emission cathode matrices for high-power microwave devices[J]. Journal of Communications Technology and Electronics, 2013, 58(4):357-365. doi: 10.1134/S1064226913040116 [6] ULISSE G, BRUNETTI F, TAMBURRI E, et al. Carbon nanotube cathodes for electron gun[J]. IEEE Electron Device Letters, 2013, 34(5):698-700. doi: 10.1109/LED.2013.2250247 [7] IWAI Y, MURAMATSU K, TSUBOI S, et al. X-ray tube using a graphene flower cloth field emission cathode[J]. Applied Physics Express, 2013, 6(10):105102. doi: 10.7567/APEX.6.105102 [8] JEONG J W, KIM J W, KANG J T, et al. A vacuum-sealed compact X-ray tube based on focused carbon nanotube field-emission electrons[J]. Nanotechnology, 2013, 24(8):085201. doi: 10.1088/0957-4484/24/8/085201 [9] IWAI Y, KOIKE T, HAYAMA Y, et al. X-ray tube with a graphite field emitter inflamed at high temperature[J]. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2013, 31(2):02B106. doi: 10.1116/1.4769970 [10] HATA K, NAGAI R, NAGAI S. Newly designed high resolution X-ray microscope with a liquid lithium field emission electron source[C]//25th International Vacuum Nanoelectronics Conference. Jeju Island, Korea: [s. n. ], 2012, 7: 74. [11] WATANABE N, TANAKA M, SHIMIZU T. Characterization of an electron emitting tip by field emission microscope and scanning probe microscope[J]. Journal of the Vacuum Society of Japan, 2015, 58(4):131-133. doi: 10.3131/jvsj2.58.131 [12] WEI L, ZHANG X B, WANG B P, et al. A stable field-emission light source with ZnO nanoemitters[J]. IEEE Electron Device Letters, 2008, 29(5):452-455. doi: 10.1109/LED.2008.920465 [13] WU H C, YOUH M J, LIN W H, et al. Fabrication of double-sided field-emission light source using a mixture of carbon nanotubes and phosphor sandwiched between two electrode layers[J]. Carbon, 2012, 50(13):4781-4786. doi: 10.1016/j.carbon.2012.05.059 [14] 李景湧.有限元法[M].北京:北京邮电大学出版社, 2002. LI Jing-yong. Finite element method[M]. Beijing:Beijing University of Posts and Telecommunications Press, 2002.