-
射电天文学在宇宙学、星系演化、恒星物理、探索地外生命等研究领域中扮演着重要的角色,其中毫米波射电天文是研究恒星形成、星系形成乃至宇宙形成的重要研究领域。在3 mm波段,由于有分布非常广泛的CO分子的最低转动能级跃迁,国内外已有大量的观测研究,并且取得很大的成绩,而7 mm波段的观测相对较少。在7 mm波段也有大量的分子谱线,且包括很多重要的分子谱线,如HC3N(5-4) (45.49 GHz)、SiO(1-0) (43.42 GHz)、CS(1-0) (48.99 GHz)以及其同位素C34S(1-0) (48.21 GHz)和13CS(1-0) (46.25 GHz)、H2CO(48.28 GHz)、CH3OH(44.07 GHz)等[1-3]。这些谱线是分子云和恒星形成区物理、化学性质的重要探针;如果具备足够的灵敏度(如依托大口径望远镜),还可以用这些分子谱线研究星系演化早期阶段的物理和动力学性质。发展7 mm(Q)波段观测将显著提高在分子谱线前沿研究领域的能力和水平[4-5]。
随着射电望远镜接收机系统工作带宽和工作频率需求的不断增加,为了满足Q波段接收机的要求,需要对正交模耦合器(ortho-mode transducer, OMT)的工作带宽进行扩展并且提高频段OMT加工装配程序[6-7]。由于工作频率越高,加工装配误差对OMT的性能影响愈加明显。本文设计了一款宽带脊过渡正交模耦合器,该OMT工作覆盖Ka和Q波段,结构紧凑,性能优异,降低了加工装配误差对电气性能的影响,最后利用HFSS仿真软件进行仿真设计,并通过实物测试验证了设计的正确性。
Design of a Q Band Orthomode Transducer Based on the Ridged Waveguide Connection
-
摘要: 描述了一款宽带脊过渡正交模耦合器,该正交模耦合器中心频率为40 GHz,相对带宽50%,拟应用于射电望远镜Q波段接收机系统。该正交模耦合器由双脊过渡-分支接头、Y型接头、E型弯头组成,其结构紧凑,降低了加工装配误差对电气性能的影响。对该正交模耦合器实际加工后进行测试,其Y型接头输出口回波损耗≤ -22.7 dB,直臂输出口回波损耗≤ -21.0 dB,Y型接头输出口-直臂输出口隔离度≤ -45.6 dB。实测结果表明该正交模耦合器反射损耗和隔离度与仿真结果的曲线变化趋势基本吻合,在实际工作频带30~50 GHz范围内可以满足射电天文观测需求。Abstract: This paper describes a wideband orthomode transducer (OMT) based on the ridged waveguide connection, the center frequency of OMT is 40 GHz, relative bandwidth is 50%. The transducer is aimed to work in Q-band receiver system in radio telescope. This OMT is composed of dual ridged waveguide connection joint, Y type joint and E type elbow, the structure of OMT is compact, and the influence of processing and assembling errors on the electrical performance is reduced. After testing the actual machining of the OMT, the reflection loss of Y type joint output S11 ≤ -22.7dB, the reflection loss of direct arm output ≤ -21.0dB, and the isolation between Y type joint output and direct arm output ≤ -43.4dB. The trend of curve change between actual measure and simulation result is very similar, and this OMT can satisfy the requirements of radio astronomic observation in (30~50) GHz bandwidth.
-
Key words:
- broadband /
- ortho-mode /
- Q-band /
- ridged
-
[1] CESARONI R. Outflow, infall, and rotation in high-mass star forming regions[M]. Netherlands:Dense Molecular Gas Around Protostars and in Galactic Nuclei, 2005. [2] WU Y F, WANG J Z, WU J W A. Search for extremely young stellar objects[J]. Chin Phys Lett:English Edition, 2003(8):1409-1412. doi: 10.1088/0256-307X/20/8/366 [3] ZHOU W F, WU Y F, WEI Y, et al. Massive molecular cloud cores and activities of star formation[J]. Chin Phys B:English Edition, 2005, 14(4):863-868. http://cpb.iphy.ac.cn/EN/Y2005/V14/I4/859 [4] CHUNG M H, KHAIKIN V B, KIM H R, et al. A next generation multi-beam focal plane array receiver of TRAO for 86-115 GHz band[J]. Journal of Astronomy & Space Sciences, 2006, 23(1):19-28. http://www.koreascience.or.kr/article/ArticleFullRecord.jsp?cn=OJOOBS_2006_v23n1_19 [5] YANG J, SHAN W L, SHI S C, et al. The superconducting spectroscopic array receiver (SSAR) for millimeter-wave radio astronomy[C]//Global Symposium on Millimeter Waves, 2008. [S. l. ]: IEEE, 2008: 177-179. [6] 佚名.天馈系统中的波导元件[M].合肥:电子工业部第38研究所, 1982. Anonymity. Waveguide components in the antenna feed system[M]. Hefei:No. 38 Research Institute of CETC, 1982. [7] 波扎. 微波工程[M]. 第3版. 张肇仪, 周乐柱, 吴德明, 等. 译. 北京: 电子工业出版社, 2008. POZAR D M. Microwave engineering[M]. 3rd. translated by ZHANG Zhao-yi, ZHOU Le-zhu, WU De-ming, et al. Beijing: Electronic Industry Press, 2008. [8] SKINNER S J, JAMES G L. Wide-band orthomode transducers[J]. IEEE Transactions on Microwave Theory Techniques, 1991, 39(2):294-300. doi: 10.1109/22.102973 [9] COUTTS G M. Wideband diagonal quadruple-ridge orthomode transducer for circular polarization detection[J]. IEEE Transactions on Antennas & Propagation, 2011, 59(6):1902-1909. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=5722980 [10] BØIFOT A M, LIER E, SCHAUG-PEETEERSEN T. Simple and broadband orthomode transducer[J]. IEEE Proceedings H, 1990, 137(6):396-400. https://www.researchgate.net/publication/239426443_Simple_and_broadband_orthomode_transducer [11] CHATTOPADINGS G, CHARLSTROM J E. Finline ortho-mode transducer for millimeter waves[J]. IEEE Microwave and Guided Wave Letters, 1999, 9(9):330-341. https://ci.nii.ac.jp/naid/80011329788/en/ [12] RUIZ-CRUZ J A, MONTEJO-GARAI J R, REBOLLAR J M, et al. Computer aided design of wideband otrhomode transducers based on Bøifot Junction[C]//Microwave Symposium Digest, IEEE MTT-S International. [S. l. ]: IEEE, 2006: 1173-1176. [13] COUTTS G M. Wideband diagonal quadruple-ridge orthomode transducer for circular polarization detection[J]. IEEE Transactions an Antennas and Propagation, 2011, 59(6):1902-1909. doi: 10.1109/TAP.2011.2122219