-
无论对于高速数字信号的传输还是高频模拟信号的传输,其阻抗匹配是影响高频信号质量的主要因素之一[1]。阻抗匹配可以提高数字信号传输系统的可靠性和通信稳定性,而对于高频模拟信号(如矩形脉冲)而言,阻抗匹配能最大程度地降低信号失真[2-3]。其中,传输线技术的研究成为阻抗匹配技术的关键。文献[4]的“传输线基础”成为传输线技术的重要文献,促进了国内外传输线技术的飞速发展。平坦传输线结构、有损传输线、非线性传输线等的提出和研究不断丰富传输线理论,高频系统的应用使传输线阻抗匹配技术不断扩展和丰富[5-12]。而具有多分支结构特征的电路和传输线,在射频系统、微波系统中十分常见[13]。但在现有的文献中,基于阻抗匹配的基础理论体系和深入讨论这种特殊结构对信号的影响和精确的匹配计算却没有。因此,本文根据在高性能脉冲信号发生器研究过程中,对于射频通道模块的设计实践的总结,对该特殊结构的电路的阻抗匹配进行了深入分析。从传输线阻抗匹配的基本原理出发,分析研究了信号多分支结构的传输线特性和阻抗匹配条件,并对具有3个分支的传输线结构实例进行了仿真分析,并结合设计实践中的电流倍增电路(双分支)的实验结果,进一步总结了其他的影响因素,提出了传输线多分支结构阻抗匹配的基本解决方案和参数计算方法。
-
多分支结构的阻抗匹配中,驱动器的输出阻抗为Rs,负载阻抗则为各分支端接收器输入阻抗的并联${R_{L1}}\parallel {R_{L2}}\parallel {R_{L3}}$。分支结构中由于多支路的存在,也就存在多段不同的传输线,每两个不同节点之间的连接线都是一段独立的传输线[13]。每一段传输线的特性阻抗需要根据节点两端阻抗连续的原则进行阻抗控制。在信号传输出现分支的节点处,分支电路表现出来的总体特性阻抗需要根据具体的分支与节点分布情况进行计算,本文以图 2的三分支结构模型为例进行说明。根据文献[14]的研究成果,如果用传输线的零阶模型来计算特性阻抗,则该值为:
$$ {Z_0} = \frac{{83}}{{{C_L}}}\sqrt {{\varepsilon _r}} $$ (1) 式中,Z0为传输线特性阻抗;CL为传输线单位长度电容量;εr为材料的介电常数。出现分支节点处,如图 2中的节点,信号在到达A1前一瞬间遇到的传输线瞬态阻抗为Z00,过A1后的一瞬间遇到的瞬态阻抗为Z01与Z02的共同作用。传输线Z01、Z02是均匀的,则在A1的分界面两个分支对原信号的瞬态阻抗可以用它们各自特性阻抗Z01和Z02来表示。分界面处的瞬态阻抗设为Z0A1+,分界面之后单位长度的电容量设为CL',两条支路的传输线单位长度电容量分别为CL1与CL2。顺着信号路径方向,从A1向后看过去,两支路传输线单位长度电容量CL1与CL2为并联结构,因此得到式(2)。由式(2)和式(3)可以看出,节点A1后的瞬态阻抗为${Z_{0A1 + }} = {Z_{01}}\parallel {Z_{02}}$。
$$ {Z_{0A1 + }} = \frac{{83}}{{{C_L}^\prime }}\sqrt {{\varepsilon _r}} = 83\sqrt {{\varepsilon _r}} \left( {\frac{1}{{{C_{L1}}\parallel {C_{L2}}}}} \right) $$ (2) $$ {Z_{01}}\parallel {Z_{02}} = \frac{{\left( {\frac{{83}}{{{C_{L1}}}}\sqrt {{\varepsilon _r}} \frac{{83}}{{{C_{L2}}}}\sqrt {{\varepsilon _r}} } \right)}}{{\frac{{83}}{{{C_{L1}}}}\sqrt {{\varepsilon _r}} + \frac{{83}}{{{C_{L2}}}}\sqrt {{\varepsilon _r}} }} $$ (3) 因此,图 2中多分支结构模型的阻抗匹配必须满足式(4)和式(5):
$$ {R_s} = {Z_{00}}, {R_{L1}} = {Z_{02}}, {R_{L2}} = {Z_{03}}, {R_{L3}} = {Z_{04}}, \\ {Z_{00}} = {Z_{01}}\parallel {Z_{02}}, {Z_{01}} = {Z_{03}}\parallel {Z_{04}} $$ (4) $$ {Z_{00}} = {R_{L2}}\parallel {R_{L3}}\parallel {R_{L1}}, {Z_{01}} = {R_{L2}}\parallel {R_{L3}} $$ (5)
Research on the Impedance Matching Technology of the Transmission Line with the Multiple Branch
-
摘要: 阻抗匹配技术是高频电子电路设计的关键。因此,为了解决特殊结构传输线的阻抗匹配计算问题,该文在阐述传输线阻抗匹配的基本原理的基础上,给出了传输线多分支结构的基本特征。在深入分析了传输线多分支结构的信号传输特性的基础上,结合传输线零阶模型得到了多分支结构阻抗的匹配条件,并对比给出了仿真结果。该文还对传输线多分支结构模型中影响信号传输特性的主要因素进行了分析总结,进一步优化了传输线多分支结构阻抗匹配的解决方案。Abstract: Impedance matching technology is the key to designing high-frequency electronic circuits. In order to solve the problem of impedance matching of transmission lines with special structures, the basic characteristics of the transmission line with multi-branch structure are studied based on the principle of impedance matching of transmission lines, and signal transmission characteristics of transmission line with multi-branch structure are analyzed in depth. Combined with the zero-order model of transmission line, the impedance matching conditions of multi-branch structure are obtained, and the simulation results are given. This paper summarizes the main factors influencing the signal characteristics in the model. As well, it further optimizes the solution to the impedance matching of the transmission line with multi-branch structure.
-
[1] 陈建华. PCB传输线信号完整性及电磁兼容特性研究[D]. 西安: 西安电子科技大学, 2010. CHEN Jian-hua. Study on singal integrity and EMC characteristics of PCB transmission lines[D]. Xi'an: Xidian University, 2010. [2] 何彭, 何为, 苏新虹, 等. 基于HFSS研究PCB传输线的信号完整性分析[C]//2014中日电子电路秋季大会暨秋季国际PCB技术/信息论坛论文集. 东莞, 广东: 中国音质电路行业协会, 2014: 10-15. HE Peng, HE Wei, SU Xin-hong, et al. Research about signal integrity problem of high-speed PCB based on HFSS[C]//2014 China-Japan Electronics Fall Conference & Autumn International PCB Technology/Information Forum Proceedings. Dongguan, Guangdong: China Sound Quality Circuit Industry Association, 2014: 10-15. [3] 杨清熙, 王庆国, 周星, 等. 基于PSPICE建模仿真方法研究传输线网络时域响应[C]//中国物理学会第十九届全国静电学术会议论文集. 太原: 中国物理学会静电专业委员会, 2014: 254-261. YANG Qing-xi, WANG Qing-guo, ZHOU Xing, et al. PSPICE simulation method of transmission-line networks responses to electromagmetic pluse[C]//The Nineteenth National Academic Conference of electrostatic of China Physical Society. Taiyuan: Chinese Physics Society Electrostatic Professional Committee, 2014: 254-261. [4] ANDERSON E M. Eletric transmission line fundamentals reston[M]. Reston, VA:Reston Pulbishing Company Inc, 1985:1-4. [5] ITOH T. Planar transmission line structures[M]. Piscataway, NJ:IEEE, 1987:1-3. [6] GARDIAL F. Lossy transmission lines[M]. Norwood, MA:Artech House, 1987:6-32. [7] HALL S H, HALL GW, MCCALL J A. High speed digital system design[M]. Hoboken, NJ:John Wiley and Sons, 2000:1-48. [8] CHIPMAN R A. Signal and power intergrity in digital systems[M]. Columbus, OH:McGraw-Hill Book Company, 1995:35-78. [9] LOBOS T, REZMER J. Waelet transforms for real-time estimation of transmission line impedance under transient conditions[J]. Electrical Engineering, 2002, 84(2):63-67. doi: 10.1007/s002020100104 [10] GARCIA N, ACHA E. Transmission line model with frequency dependency and propagation effects: a model order reduction and state-space approch[C]//Power & Energy Society General Meeting-Conversion & Delivery of Electrical Energy in the Century. Pittsburgh, PA, USA: IEEE, 2008: 1-7. [11] STEVEN R. Best, shunt-stub-line impedance matching:a wave reflection analysis tutorial[J]. IEEE Antennas & Propagation Magazine, 2002, 44(1):76-86. http://ieeexplore.ieee.org/iel5/74/21527/00997910.pdf?arnumber=997910 [12] LIAO Yong, XU Gang, XIE Ping. Numerical simulation of non-linear transmission line[J]. High Power Laser and Particle Beams, 2015, 27(8):1-5. http://www.dtic.mil/get-tr-doc/pdf?AD=ADA513760 [13] BROOKS D. Controlling impedances when nets branch out[R]. [S. l. ]: UltraCAD Design Inc, 2005: 1-6. [14] BOGATIN E. Signal integrity:Simplified[M]. Upper Saddle River, NJ, USA:Pretice Hall PTR, 2003:235-312.