基于信息熵的加权基因关联网络融合方法

Integration of Weighted Gene Association Networks Based on Information Entropy

  • 摘要: 针对加权基因关联网络(WGAN)的融合问题,提出了基于信息熵的加权网络数据融合方法。该方法利用信息熵来刻画基因间连边的不确定程度,并由此实现对4个现有的人类加权基因关联网络的融合,从而获得一个规模更大、生物学信息更丰富的WGAN网络。融合效果的验证结果表明,新的WGAN网络包含了更多的基因连边,其边权比原始网络中的边权有更强的生物学相关性,同时在疾病基因预测中表现出更为满意的效果。

     

    Abstract: To integrate information of several weighted genes associated networks (WGAN), this paper proposes a network data integration method based on information entropy. This method uses information entropy to depict uncertain degree of gene-gene links, and thus realizes the integration of four existing human weighted genes associated network to construct a larger WGAN network which includes richer biology information. This new WGAN network contains more edges than each of the original network, and the edge weights have higher biological relevance than in the original networks. It also exhibits more satisfactory performance in disease genes prediction.

     

/

返回文章
返回