-
微机械(MEMS)谐振器设计的振荡器具有优异的性能,在某些方面具有取代石英晶体的可能,比如MEMS与CMOS集成电路制造技术的兼容性可以实现全硅集成振荡器[1]。谐振器的关键指标有品质因数(Q)和机电耦合系数(kt2)[2],其中Q是改善振荡器相位噪声的关键参数[3]。目前的MEMS谐振器有多种结构,比如自由梁式[4]、圆盘式[5]。自由梁式频率可达吉赫兹,但在空气中Q值较低,文献[4]设计的90 MHz自由梁谐振器Q值为2 000[4];圆盘式频率也可达吉赫兹,文献[5]设计的98 MHz圆盘谐振器在空气中Q值可达8 000,但kt2小[5]。通常,氮化铝(aluminum nitride, AlN)横向模态谐振器有实现低的动态阻抗(50 Ω)[6]和工作在极高频率(可达到吉赫兹)[7]的优点。AlN横向模态谐振器显示出足够高的kt2,但其Q值有限,文献[8]设计的94.5 MHz谐振器Q值为2 363[8]。实验结果表明在低温低谐振频率时锚点损耗(Qanc)为主要的能量损耗[9],通过分析发现锚点损耗主要是由于谐振体与支撑梁及基底的声波能量传输过程[10]。结合有限元(FEA)和完美匹配层(PML)的建模方法[11],分析谐振体外加一个外框的支撑结构,用此结构实现了谐振体与基底的退耦,减小通过支撑结构造成的从谐振体到基底的能量损耗。并保持谐振体尺寸固定,研究外框的设置对谐振体Q的影响,通过对仿真结果和机械模型的数据进行拟合,说明外框结构能有效地减小基底造成的能量损耗,并且能显著地改善谐振器的Q值。
-
AlN横向振动模态压电谐振器是基于夹在顶层金属导电层和底部掺杂单晶硅之间的AlN压电薄膜制作的振动平板,在压电薄膜厚度(h)方向施加电场,利用压电薄膜的d31产生一个横向激励[12]。对于特定的横向尺寸比率的单晶硅平板,其1-D模型可以用于对横向振动模态的谐振器建模[13]。1-D模型的x方向在自由终端条件下的振动模态和本征频率分别为:
$$ {u_n}(x) = \cos \left( {\frac{{n\mathtt{π} x}}{L}} \right), {\rm{for}}\;\;\;\;x = \left[ {0, L} \right] $$ (1) $$ {\omega _n} = \frac{{n\mathtt{π} }}{L}\sqrt {\frac{{{E_i}}}{{{\rho _m}}}} $$ (2) 式中,L为谐振体长度方向的尺寸;Ei为在i方向的单向杨氏模量;ρm为谐振体的材料密度。
-
在谐振器的锚点损耗分析中,使用部分阻尼的两级隔振系统[14]的机械模型进行建模。如图 1所示,外框结构的质量为m1,弹性系数为k1,阻尼系数为c,谐振体的质量为m2,弹性系数为k2。为简化分析,基底被认为是声波吸收材料,存在的阻尼合并到阻尼系数c中。
在机械模型中,令外框的位移为x1,谐振体的位移为x2,输入激励的位移为u。根据经典力学得物体的运动方程为:
$${m_1}{\ddot x_1} + c{\dot x_1} + {k_1}{x_1} - c{\dot x_2} - {k_1}{x_2} = 0 $$ (3) $$ {m_2}{\ddot x_2} + c{\dot x_2} + ({k_1} + {k_2}){x_2} - c{\dot x_1} - {k_1}{x_1} = 0 $$ (4) 选取零初始条件,将以上两个微分方程作拉氏变换,得到两个复代数方程:
$$ ({m_1}{s^2} + cs + {k_1}){X_1}(s) - (cs + {k_1}){X_2}(s) = 0 $$ (5) $$ ({m_2}{s^2} + cs + {k_1} + {k_2}){X_2}(s) - (cs + {k_1}){X_1}(s) = 0 $$ (6) 式中,
$$ {X_1}(s) = {\cal L}[{x_1}(t)], {X_2}(s) = {\cal L}[{x_2}(t)], U(s) = {\cal L}[u(t)] $$ (7) 从以上两个方程中消去$ {X_2}(s) $,得到振动系统的传递函数:
$$ \begin{array}{c} G(s) = \frac{{{X_1}(s)}}{{U(s)}} = \\ \frac{{{k_2}(cs{\rm{ + }}{k_1})}}{{({m_1}{s^2} + cs + {k_1})({m_2}{s^2} + cs + {k_1} + {k_2}) - {{(cs + {k_1})}^2}}} \end{array} $$ (8) 上式中令$ s = {\rm{j}}\omega $,得到振动系统的频率特性为:
$$G(\omega ) = {U_0}(\omega ) + {\rm{j}}{V_0}(\omega ) $$ (9) $$ R(\omega ) = {[{U_0}^2(\omega ) + {V_0}^2(\omega )]^{1/2}} $$ (10) $$ \theta (\omega ) = \arctan \left[ {\frac{{{V_0}(\omega )}}{{{U_0}(\omega )}}} \right] $$ (11) 引入以下参数:
$$ {\omega _1}^2 = \frac{{{k_1}}}{{{m_1}}}, {\omega _2}^2 = \frac{{{k_2}}}{{{m_2}}}, {c_c} = 2{({m_1}{k_1})^{1/2}} $$ $$ \xi = \frac{c}{{{c_c}}}, \mu = \frac{{{m_2}}}{{{m_1}}}, f = \frac{{{\omega _2}}}{{{\omega _1}}}, g = \frac{\omega }{{{\omega _1}}} $$ 得到$R(\omega ) $为$ {\rm{g}}, \xi , \mu , f $的函数$ T{\rm{(g}}, \xi , \mu , f) $:
$$ R(\omega ) = T\left( {g, \xi , \mu , f} \right) = {\left\{ {\frac{{{\mu ^2}{f^4} + 4{\xi ^2}{\mu ^2}{f^4}{g^2}}}{{{{[\mu {f^2} - (1 + \mu + \mu {f^2}){g^2} + \mu {g^4}]}^2} + 4{\xi ^2}{g^2}{{[\mu {f^2} - (1 + \mu ){g^2}]}^2}}}} \right\}^{1/2}} $$ (12) 给定一组数据,系统中的质量比为$ \mu \approx 0.1 $,设$ {k_1} \approx {k_2} $,则固有频率比$ f \approx 3.3$,阻尼比$ \xi $取几个不同数值,分别进行数值计算,结果见图 2。
当激励频率ω与外框谐振频率ω1的比值g为10时,外框位移x1对输入激励的位移u的响应接近零。
-
一般情况下谐振器Q值定义为:
$$ Q = 2\mathtt{π} \frac{{{E_{{\rm{stored}}}}}}{{{E_{{\rm{lost}}}}}} $$ (13) 锚点损耗是由于弹性波从谐振器到基底的散射造成的,进入衬底的弹性波被基底耗散,只有很少部分能量返回到谐振器。采用FEM仿真工具可以计算谐振器的Q值,图 3为AlN横向振动模态中$ {E_{{\rm{stored}}}} $和$ {E_{{\rm{lost}}}} $计算方法的图形表示,其中${E_{{\rm{stored}}}} $通过对谐振器和支撑梁的体积V积分得到,$ {E_{{\rm{lost}}}} $通过对支撑梁和基底的接触面(S)积分得到。T和S分别是应力和应变张量,x是位移向量,n是接触面的单位法向量。
在FEM仿真软件COMSOL中利用器件的对称性,仅有1/4谐振器进行网格划分并用于仿真。图 4展示了结构模型和用于仿真的网格划分,典型的网格划分包括四面体或锲形元素,为了保证更好的仿真锚点损耗,在支撑点处尽量细分网格(纵向四面体元素大于4个)。
本文对两个30 MHz的谐振器进行比较,如图 5所示,一种无外框结构,一种具有外框结构。仿真尺寸参数见表 1,单晶硅材料参数见表 2。
表 1 仿真尺寸参数
参数 尺寸 L(谐振体长度)/μm 140 W(谐振体宽度)/μm 70 La(支撑梁长度)/μm 20 Wa(支撑梁宽度)/μm 5 Lf(外框长度)/μm 420 Wf(外框宽度)/μm 210~350 We(边宽)/μm 0~70 Wc(边宽)/μm 70 表 2 单晶硅材料参数
参数 值 E(杨氏模量)/Gpa 170 ν(泊松比) 0.28 ρ (密度)/kg·m-3 2 329 v(声速)/m·s-1 8 500 压电谐振器输出电压频率响应与谐振器的机械位移-频率响应一致,为了简化分析过程,采用仿真点A处(见图 4)的位移-频率响应曲线计算锚点损耗(Qanc)。两种不同结构的谐振器仿真结果如图 6所示。
为仿真外框结构边宽We对谐振器Qanc的影响,采用8个不同边宽We的外框结构进行仿真,得到结果如图 7所示。
$ 1/{Q_{{\rm{anc}}}} $可以表示能量损耗的程度,如图 8所示,对数据进行处理得到外框边宽$ {W_{\rm{e}}} $与$ 1/{Q_{{\rm{anc}}}} $的拟合曲线。由于$ {W_{\rm{e}}} $与外框质量m1相关,机械模型中的输入激励频率为谐振器工作频率$ {\omega _r} $。因此,$ T{\rm{(}}g, \xi , \mu , f) $可以写作$ {W_{\rm{e}}} $的函数$ T({W_{\rm{e}}}) $。
设$ \xi = 0.001 $,及${W_{\rm{e}}} = 35{\rm{ \mathsf{ μ} m}} $对应的$ u = 1/7 $,$g = 4 $,得到$ T({W_{\rm{e}}}) $的拟合曲线。如图 8所示,外框边宽$ {W_{\rm{e}}} $与$ 1/{Q_{{\rm{anc}}}}$的拟合曲线与$T({W_{\rm{e}}}) $拟合曲线逼近程度高。
An Energy-Decoupling Frame Structure MEMS Resonator for Q-Enhancement
-
摘要: 为了提高MEMS谐振器的品质因数(Q值),该文设计一个微型的具有能量退耦作用的外框作为支撑结构。所设计的AlN压电谐振器工作在30 MHz横向振动模态,其Q值可以达到4.3×104,对应的f·Q乘积为1.29×1012。谐振器频率与外框的机械谐振频率比值约10:1,减小了谐振器到基底的能量耦合,从而降低能量损耗并提高谐振器Q值。通过理论和有限元分析并对谐振器的频率响应进行建模,两种方法的模型结果一致,说明了具有能量退耦外框的谐振器能降低锚点造成的能量损耗,从而有效地提高横向振动模态AlN压电谐振器的Q值。Abstract: In order to enhance the quality factor (Q) of micro-electro-mechanical system (MEMS) resonator, this paper proposes an energy-decoupling frame structure which is applied in an MEMS resonator for energy decoupling and Q enhancement. An aluminium nitride (AlN) piezoelectric resonator is designed to work at 30 MHz frequency (f) in the lateral-extension mode. The resonator Q is significantly enlarged to 4.3×104 and the value of f·Q reaches to 1.29×1012. The energy coupling between the resonator and the substrate is effectively reduced by controlling the resonant frequency ratio of the resonator to the frame structure in around 10:1. Both theoretical analysis and finite-element analysis (FEA) simulation show that the energy loss reduction and Q enhancement of resonator can be achieved by using the proposed structure.
-
Key words:
- AlN piezoelectric resonator /
- decoupling structure /
- MEMS /
- Q
-
表 1 仿真尺寸参数
参数 尺寸 L(谐振体长度)/μm 140 W(谐振体宽度)/μm 70 La(支撑梁长度)/μm 20 Wa(支撑梁宽度)/μm 5 Lf(外框长度)/μm 420 Wf(外框宽度)/μm 210~350 We(边宽)/μm 0~70 Wc(边宽)/μm 70 表 2 单晶硅材料参数
参数 值 E(杨氏模量)/Gpa 170 ν(泊松比) 0.28 ρ (密度)/kg·m-3 2 329 v(声速)/m·s-1 8 500 -
[1] van BEEK J T M, PUERS R. A review of MEMS oscillators for frequency reference and timing applications[J]. Journal of Micromechanics & Microengineering, 2012, 22(1):013001. http://www.researchgate.net/publication/230902579_A_review_of_MEMS_oscillators_for_frequency_reference_and_timing_applications?ev=prf_cit [2] MASON W P, BAERWALD H. Piezoelectric crystals and their applications to ultrasonics[J]. Physics Today, 1951, 4(5):23-24. doi: 10.1063/1.3067231 [3] ZUO C, SINHA N, PISANI M B, et al. 12E-3 channel-select RF mems filters based on self-coupled aln contour-mode piezoelectric resonators[C]//Ultrasonics Symposium. [S. l. ]: IEEE, 2007: 1156-1159. https://www.researchgate.net/publication/224297903_12E-3_Channel-Select_RF_MEMS_Filters_Based_on_Self-Coupled_AlN_Contour-Mode_Piezoelectric_Resonators [4] WANG K, WONG A C, NGUYEN T C. VHF free-free beam high-Q micromechanical resonators[J]. Journal of Microelectromechanical Systems, 2002, 9(3):347-360. http://ieeexplore.ieee.org/iel5/4749246/4760628/04760717.pdf?arnumber=4760717 [5] ABDELMONEUM M A, DEMIRCI M U, NGUYEN T C. Stemless wine-glass-mode disk micromechanical resonators[C]//IEEE the Sixteenth International Conference on MICRO Electro Mechanical Systems. Kyoto: IEEE, 2003: 698-701. [6] RINALDI M, ZUNIGA C, ZUO C, et al. Super-high-frequency two-port AlN contour-mode resonators for RF applications[J]. IEEE Transactions on Ultrasonics Ferroelectrics & Frequency Control, 2010, 57(1):38. http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=5361520 [7] LIN C M, CHEN Y Y, FELMETSGER V V, et al. AlN/3C-SiC composite plate enabling high-frequency and high-Q micromechanical resonators[J]. Advanced Materials, 2012, 24(20):2721. doi: 10.1002/adma.v24.20 [8] ABDOLVAND R, LAVASANI H M, HO G K, et al. Thin-film piezoelectric-on-silicon resonators for high-frequency reference oscillator applications[J]. IEEE Transactions on Ultrasonics Ferroelectrics & Frequency Control, 2008, 55(12):2596. http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=4683468 [9] SEGOVIA-FERNANDEZ J, CREMONESI M, CASSELLA C, et al. Anchor losses in ALN contour mode resonators[J]. Journal of Microelectromechanical Systems, 2015, 24(2):265-275. doi: 10.1109/JMEMS.2014.2367418 [10] JUDGE J A, PHOTIADIS D M, VIGNOLA J F, et al. Attachment loss of micromechanical and nanomechanical resonators in the limits of thick and thin support structures[J]. Journal of Applied Physics, 2007, 101(1):972. https://www.researchgate.net/profile/Douglas_Photiadis/publication/234880917_Attachment_loss_of_micromechanical_and_nanomechanical_resonators_in_the_limits_of_thick_and_thin_support_structures/links/5592da8008ae16f493ee43a4.pdf [11] BASU U, CHOPRA A K. Perfectly matched layers for time-harmonic elastodynamics of unbounded domains:theory and finite-element implementation[J]. Computer Methods in Applied Mechanics & Engineering, 2003, 192(11):1337-1375. https://www.deepdyve.com/lp/elsevier/perfectly-matched-layers-for-time-harmonic-elastodynamics-of-unbounded-0swk4doTd4 [12] HO G K, ABDOLVAND R, SIVAPURAPU A, et al. Piezoelectric-on-Silicon lateral bulk acoustic wave micromechanical resonators[J]. Journal of Microelectromechanical Systems, 2008, 17(2):512-520. doi: 10.1109/JMEMS.2007.906758 [13] POURKAMALI S, HO G K, AYAZI F. Vertical capacitive SiBARs[C]//IEEE International Conference on MICRO Electro Mechanical Systems. [S. l. ]: IEEE, 2005: 211-214. [14] 丁文镜.减振理论[M].第2版.北京:清华大学出版社, 2014. DING Wen-jing. Theory of vibration attenuation[M]. 2nd ed. Bejing:Tsinghua University Press, 2014