Abstract:
In order to solve the current distortion phenomenon, which is caused by the dead-time effect and DC voltage fluctuation in the single-phase solar grid-connected inverter, this paper presents a selective characteristic harmonic elimination strategy to design a current controller for grid-connect inverter for optimizing current waveform and improving current tracking performance. The double loop proportional integral (PI) control of voltage and current is realized by adopting Park transformation. PWM is reconstructed to compensate harmonics by the harmonic compensation with dynamic gain. Levenberg-Marquardt (LM) algorithm is used to improve back propagation (BP) neural network, so as to increase the accuracy of feed-forward compensation and enhance the adaptability of voltage distortion. Finally, MATLAB simulation and experimental results verify the effectiveness and rationality of the proposed method.