基于超像素的多特征融合的水平集轮廓跟踪

Superpixel-Based Level Set Tracking by Fusion of Multiple Features

  • 摘要: 在水平集轮廓跟踪框架中设计一个判别式速度函数对于有效引导轮廓进化非常重要。该文提出一个超像素驱动的速度函数建模方法,该模型融合了互补的表观和运动信息。在表观特征层,通过引入一种有效的中层视觉特征-超像素,建立基于核密度估计的判别式表观模型区分目标和背景。同时,利用运动光流场的统计信息,设计了一个可以自适应选择的阈值来区分和增强目标和背景的相对运动。最终,在决策层基于半朴素贝叶斯框架进行两种特征的融合,形成一个具有竞争能力的速度场引导水平集轮廓进化。在多个具有挑战的视频序列上的一系列实验验证了该方法的有效性和鲁棒性。

     

    Abstract: Designing a discriminative speed function plays a vital role in conducting contour evolution in level set-based tracking framework. In this work, we propose a superpixel-driven speed function modeling method by fusion of two supplementary cues:appearance and motion. Based on kernel density estimation, a discriminative model separating the object from the background is constructed in appearance space. Meanwhile, by making use of the statistical characteristics of the optical flow field, the relative motion between the object and the background can be distinguished and enhanced by an adaptively chosen threshold. Finally, these two cues are combined in decision level under the Semi-Naive Bayes framework. Experimental results on a number of challenging video sequences demonstrate the effectiveness and robustness of the proposed tracking methods.

     

/

返回文章
返回