-
有机固体电解质片式钽电容器使用导电聚合物代替传统的二氧化锰作为电容器的阴极电解质,在很多方面显示出其独特的优势ADDIN EN.CITE.DATA [1-3]。多年来,有机钽电容器在手机、笔记本电脑和台式机等电子设备中广泛使用,并以其优异的性能得到消费者的认可[4]。在过去的五年间,有机钽电容器由于高性能和可靠性,逐步在医疗、汽车电子、航天电子、武器装备领域拓展市场,特别是汽车电子将成为下一个新的应用领域[5, 6]。高压有机固体电解质片式钽电容器集合了高体积效率、高电压、小体积和低等效串联电阻(ESR)等特点,比较适合现代电子电路高频、大功率、小体积和高精度等的发展要求。特别是随着新一代半导体技术的成功应用,高压有机固体电解质片式钽电容器的市场需求呈指数式增长。
本征导电聚合物如聚吡咯(PPy)和聚三四乙烯基二氧噻吩(PEDOT)等都可以制作钽电容器阴极电解质材料[7]。其中PEDOT集良好的可加工性、导电性和高温稳定性,是目前用得最多的聚合物材料。然而,长期以来有机电解质钽电容器的特殊环境下的测试极具争议性,而这些测试条件对于传统的二氧化锰电容器而言是非常普遍的,包括高温125 ℃、2 000 h和85 ℃、85%RH测试。截至2015年底,世界钽电容器的著名公司宣告部分产品突破125 ℃、2 000 h的可靠性试验,但高压有机电解质钽电容器仍然限制在55~105 ℃的环境中使用[8]。本文在长期试验基础上,通过对电介质的处理、导电聚合物涂覆工艺的改变和界面的改性,有效提高了有机钽电容器在载荷作用下耐受高温长时间烘焙的能力,通过105 ℃、2 000 h和125 ℃、2 000 h寿命试验测试。在105 ℃、2 000 h环境中电容器的性能没有明显的变化,而在125 ℃、2 000 h环境中电容器的电性能参数的变化幅度较大,但仍然在合格的范围内。这些研究成果将对高压有机电解质钽电容器在高温严酷环境中使用提供很好的技术支撑。
Research of High Temperature Reliability of High Voltage Organic Chip Tantalum Capacitors
-
摘要: 高压有机固体电解质片式钽电容器的高温特性是限制此类电容器广泛应用的瓶颈,目前国际上普遍采用105℃的温度上限,而不能满足125℃环境下的特殊使用要求。该文通过对电介质进行"屏蔽"和预处理,对有机固体电解质进行后处理和包封层改善,高压有机电解质片式钽电容器的高温特性得到明显改善,能够安全通过105℃、2 000 h和125℃、2 000 h寿命试验。该研究结果将为有机固体电解质片式钽电容器在特殊环境下的应用提供必要的技术支撑。
-
关键词:
- 高温可靠性 /
- 高压 /
- 聚三四乙烯基二氧噻吩 /
- 钽电容器
Abstract: The high temperature characteristics of high voltage organic chip tantalum capacitors are the bottlenecks to limit the wide applications of capacitors. At present, the temperature limit of 105℃ is widely used in the world, but cannot meet the special requirements of 125℃ environment. By the "shielding" and pretreatment of the dielectrics, the post treatment of the organic solid electrolyte, and the improvement of encapsulation layer, the high temperature characteristics of high voltage organic chip tantalum capacitors are significantly improved, and therefore the life tests of 105℃, 2 000 h and 125℃, 2 000 h have passed safely. This study will provide a technical support for the applications of organic chip tantalum capacitors in the special environment.-
Key words:
- high temperature reliability /
- high voltage /
- PEDOT /
- tantalum capacitors
-
[1] 杨红生, 周啸, 楚红军, 等, 导电高分子钽电解电容器的研究进展[J].电子元件与材料, 2003, 22(7):33-38 doi: 10.3969/j.issn.1001-2028.2003.07.011 YANG Hong-sheng, ZHOU Xiao, CHU Hong-jun, et al. Recent advances in the research on the tantalum electrolytic capacitor:Using conductive polymer for counter electrode.[J] Electronic Components & Materials, 2003, 22(7):33-38 doi: 10.3969/j.issn.1001-2028.2003.07.011 [2] 刘建清, 李荐, 戴艳阳.固体钽电解电容器研究发展趋势[J].稀有金属与硬质合金, 2002, 30(2):41-44 doi: 10.3969/j.issn.1004-0536.2002.02.012 LIU Jian-qing, LI Jian, DAI Yan-yang, et al. The Research and development on solid electrolytic tantalum capacitor[J]. Rare Metals and Cemented Carbides, 2002, 30(2):41-44 doi: 10.3969/j.issn.1004-0536.2002.02.012 [3] PRYMAK J. Replacing MnO2 with conductive polymer in solid tantalum capacitors[C]//Carts Components Technology Institute Inc.[S.L.]: 1999: 148-153. [4] NIWA S, TAKETANI Y. Development of new series of aluminium solid capacitors with organic semiconductive electrolyte[J]. Journal of Power Sources, 1996, 60(2):165-171 doi: 10.1016/S0378-7753(96)80006-1 [5] JAYSON Y, JAVAID Q. Polymer based tantalum capacitors for automotive applications.[EB/OL].[2017-02-03]. https://ec.kemet.com/wp1017, 2015. [6] KIRCHMEYER S, REUTER K. Scientific importance, properties and growing applications of poly[J]. Journal of Materials Chemistry, 2005, 15(21):2077-2088 doi: 10.1039/b417803n [7] YONG Z, HUI F, WU X, et al. Progress of electrochemical capacitor electrode materials:a review[J]. International Journal of Hydrogen Energy, 2009, 34(11):4889-4899 doi: 10.1016/j.ijhydene.2009.04.005 [8] WEI Q, MUKAIDA M, KIRIHARA K, et al. Recent progress on PEDOT based thermoelectric materials[J]. Materials, 2015, 8(2):732-750 doi: 10.3390/ma8020732 [9] VASINA P, ZEDNICEK T, SIKULA J, et al. Failure modes of tantalum capacitors made by different technologies[J]. Microelectronics Reliability, 2002, 42(6):849-854 doi: 10.1016/S0026-2714(02)00034-3 [10] ANDREAS E, STEPHAN K, WILFRIED L, et al. PEDOT: Principles and applications of an intrinsically conductive polymer[J]. Crc Press. 2011. [11] VITORATOS E, SAKKOPULOS S, DALAS E, et al. Thermal degradation mechanisms of PEDOT:PSS[J]. Organic Electronics, 2009, 10(1):61-66 doi: 10.1016/j.orgel.2008.10.008 [12] EVANGELOS V, SOTIRIOS S, NIKOLAOS P, et al. Conductivity degradation study of PEDOT:PSS films under heat treatment in helium and atmospheric Air[J]. Open Journal of Organic Polymer Materials, 2012, 2(1):7-11. doi: 10.4236/ojopm.2012.21002