-
晶体K2Zn(SO4)2·6H2O (PHZS)属于单斜晶系,空间群为(P121/a1),每个晶胞含2个Zn原子,晶格常数[1] a ≈ 0.903 4 nm,b ≈ 1.218 4 nm,c ≈0.614 8 nm, = 104.8,该晶体由一系列不规则的KO8多面体和Zn(H2O)6八面体通过氢键与SO4相连接而构成网格状结构。其中Zn2+与周围6个H2O分子构成[Zn(H2O)6]2+基团,该位置属正交(D2)点群对称。众所周知,晶体的光学、磁学等性能与掺杂离子的局域结构密切相关,而掺杂离子所处的局域环境往往不同于母体位置[2-3]。因此,研究晶体中掺杂离子的局域结构对理解掺杂离子影响材料性能的微观机理非常重要。电子顺磁共振(EPR)谱强烈依赖于顺磁离子所处局域环境,并可通过分析作为其实验结果的EPR参量定量地确定掺杂离子周围的局部结构[4]。文献[1]报道了PHZS:Cu2+的EPR参量(g因子gx, gy, gz和精细结构常数Ax, Ay, Az)的实验数据,但是上述EPR参量实验结果以及杂质离子局域结构信息至今尚未得到定量的理论分析。本文基于3d9离子EPR参量的高阶微扰公式计算PHZS: Cu2+的g因子和精细结构常数A因子,相关的正交晶场参量由重叠模型确定,并考虑了配体轨道和旋轨耦合作用以及基态波函数中两个态2A1g(θ)和2A1g(ε)之间混合对EPR参量的影响。
-
Cu2+掺入PHZS晶体后会替代母体Zn2+位置并与周围6个最近邻水分子形成[Cu(H2O)6]2+基团。根据文献[1]测得的g因子各向异性gz> gx,gy> 2,可以判断杂质[Cu(H2O)6]2+基团属于正交伸长八面体。在此环境下,Cu2+(3d9)离子较低的轨道双重态(2Eg)将分裂成2A1g(θ)和2A1g’(ε)两个轨道单重态,较高的轨道三重态(2T2g)将分裂成2B1g(ζ)、2B2g(ξ)和2B3g(η)三个轨道单重态。由于正交对称下2A1g(θ)和2A1g’(ε)具有相同的不可约表示,二者将发生混合,因此基态应为2A1g(θ)和2A1g’(ε)的混合态,即:
$$\mathit{\Phi} = \alpha \left| {{d_{{x^2} - {y^2}}}} \right\rangle + \beta \left| {{d_{3{z^2} - {r^2}}}} \right\rangle $$ (1) 式中,N为共价因子,表征体系共价性;$\alpha $和$\beta $为态混合系数,并满足归一化关系:
$${\alpha ^2} + {\beta ^2} = 1$$ (2) 由双旋—轨耦合模型和微扰理论,可得3d9离子在正交对称下EPR参量的高阶微扰公式为[5]:
$$\begin{gathered} {g_x} = {g_s} + \frac{{2k'\varsigma '{{(\alpha + \sqrt 3 \beta )}^2}}}{{{E_4}}} - \frac{{2\alpha k'\varsigma \varsigma '(\alpha + \sqrt 3 \beta )}}{{{E_2}{E_4}}} + \hfill \\ \begin{array}{*{20}{c}} {}&{} \end{array}\frac{{k'\varsigma \varsigma '({\alpha ^2} - 3{\beta ^2})}}{{{E_2}{E_4}}} - \frac{{2{\alpha ^2}{g_s}{{\varsigma '}^2}}}{{E_2^2}} - \hfill \\ \begin{array}{*{20}{c}} {}&{} \end{array}\frac{{{g_s}{{\varsigma '}^2}{{(\alpha - \sqrt 3 \beta )}^2}}}{{2E_3^2}} + \frac{{2\alpha k{{\varsigma '}^2}(\alpha - \sqrt 3 \beta )}}{{{E_2}{E_3}}} \hfill \\ \end{gathered} $$ $$ \begin{gathered} {g_y} = {g_s} + \frac{{2k'\varsigma '{{(\alpha - \sqrt 3 \beta )}^2}}}{{{E_3}}} - \frac{{2\alpha k\varsigma \varsigma '(\alpha - \sqrt 3 \beta )}}{{{E_2}{E_3}}} + \hfill \\ \begin{array}{*{20}{c}} {}&{} \end{array}\frac{{k'\varsigma \varsigma '({\alpha ^2} - 3{\beta ^2})}}{{{E_2}{E_3}}} - \frac{{2{\alpha ^2}{g_s}{{\varsigma '}^2}}}{{E_2^2}} - \hfill \\ \begin{array}{*{20}{c}} {}&{} \end{array}\frac{{{g_s}{{\varsigma '}^2}{{(\alpha + \sqrt 3 \beta )}^2}}}{{2E_4^2}} + \frac{{2\alpha k{{\varsigma '}^2}(\alpha + \sqrt 3 \beta )}}{{{E_2}{E_4}}} \hfill \\ \end{gathered} $$ $$ \begin{gathered} {g_z} = {g_s} + \frac{{8{\alpha ^2}k'\varsigma '}}{{{E_2}}} - \frac{{2\alpha k'\varsigma \varsigma '(\alpha - \sqrt 3 \beta )}}{{{E_2}{E_3}}} - \hfill \\ \begin{array}{*{20}{c}} {}&{} \end{array}\frac{{2\alpha k'\varsigma \varsigma '(\alpha + \sqrt 3 \beta )}}{{{E_2}{E_4}}} - \frac{{{g_s}{{\varsigma '}^2}{{(\alpha - \sqrt 3 \beta )}^2}}}{{2E_3^2}} - \hfill \\ \begin{array}{*{20}{c}} {}&{} \end{array}\frac{{{g_s}{{\varsigma '}^2}{{(\alpha + \sqrt 3 \beta )}^2}}}{{2E_4^2}} - \frac{{k'\varsigma \varsigma '(\alpha - 3{\beta ^2})}}{{{E_3}{E_4}}} \hfill \\ \end{gathered} $$ $${A_x} = {P_0}\left[{-{\kappa _c} + {{\kappa '}_c}-\frac{2}{7}N + ({g_x}-{g_s}) + \frac{{15}}{{14}}({g_x} - {g_s})} \right]$$ $${A_y} = {P_0}\left[{-\kappa-{{\kappa '}_c} + \frac{2}{7}N + ({g_y}-{g_s}) + \frac{{15}}{{14}}({g_y} - {g_s})} \right]$$ $${A_z} = {P_0}\left[{(-{\kappa _c} + \frac{4}{7}N + ({g_z}-{g_s})-\frac{{({g_x} + {g_y} - 2{g_s})}}{{14}}} \right]$$ (3) 式中,gs≈ 2.002 3为自由电子g因子值;$\varsigma $和$\varsigma '$为旋轨耦合系数;$k$和$k'$为轨道缩小因子。它们可分别表示为:
$$ \varsigma = {N_t}(\varsigma _d^0 + \lambda _t^2\varsigma _p^0/2), \varsigma ' = \sqrt {{N_t}{N_e}} (\varsigma _d^0 - {\lambda _t}{\lambda _e}\varsigma _p^0/2)\\ k = {N_t}\left( {1 + \lambda _t^2/2} \right), k' = \sqrt {{N_t}{N_e}} [1-{\lambda _t}({\lambda _e} + {\lambda _s}A)/2] $$ (4) 式中,ζd0和ζp0为自由Cu2+和配体O2—的旋—轨耦合系数;Nγ(γ=t, e)和λ (或λs)表示归一化因子和轨道混合系数;A为积分R < ns|∂/∂y|npy>,其中R为金属—配体间距;κc和κc′分别为Cu2+的各向同性和各向异性芯区极化常数;P0 (≈ 388 ×10-4 cm-1)为自由Cu2+离子的偶极超精细结构参量[6-7]。由离子簇模型[8], 分子轨道系数Nt,Ne和λt,λe满足以下近似关系:
$$ {N^2} = N_t^2(1 + \lambda _t^2S_{{\rm{d}}pt}^2 - 2{\lambda _t}{S_{{\rm{d}}pt}})\\ {N^2} = N_e^2(1 + \lambda _e^2S_{{\rm{d}}pe}^2 + \lambda _s^2S_{{\rm{d}}s}^2 - 2{\lambda _e}{S_{{\rm{d}}pe}} - 2{\lambda _s}{S_{{\rm{d}}s}}) $$ (5) 和归一化条件:
$$ {N_{\rm{t}}}(1 - 2{\lambda _t}{S_{{\rm{d}}pt}} + \lambda _t^2) = 1\\ {N_e}(1 - 2{\lambda _e}{S_{{\rm{d}}pe}} - 2{\lambda _s}{S_{{\rm{d}}s}} + \lambda _e^2 + \lambda _s^2) = 1 $$ (6) 式中,Sdp及Sds为群重叠积分;对同一不可约表示eg,采用如下近似:λe/λs ≈ Sdpe/Sds。
式(3)中能级差Ei(i =1, 2, 3, 4)可由立方场参量Dq和正交场参量Ds、Dt、Dξ和Dη表示为:
$$ {E_1} \approx 4{D_{\rm{s}}} + 5{D_t}\\ {E_2} \approx 10{D_q}\\ {E_3} \approx 10{D_{\rm{q}}} + 3{D_s} - 5{D_t} - 3{D_\xi } + 4{D_\eta }\\ {E_4} \approx 10{D_{\rm{q}}} + 3{D_s} - 5{D_t} + 3{D_\xi } - 4{D_\eta } $$ (7) 以上立方和正交场参量可由重叠模型[9]得到:
$$ {D_q} = \frac{2}{3}{\overline A _4}(R)\left[{{{\left( {\frac{R}{{{R_x}}}} \right)}^{{t_4}}} + {{\left( {\frac{R}{{{R_y}}}} \right)}^{{t_4}}}} \right]\\ {D_s} = \frac{2}{7}{\overline A _2}(R)\left[{{{\left( {\frac{R}{{{R_x}}}} \right)}^{{t_2}}} + {{\left( {\frac{R}{{{R_y}}}} \right)}^{{t_2}}}-2{{\left( {\frac{R}{{{R_z}}}} \right)}^{{t_2}}}} \right]\\ {D_t} = \frac{8}{{21}}{\overline A _4}(R)\left[{{{\left( {\frac{R}{{{R_x}}}} \right)}^{{t_4}}} + {{\left( {\frac{R}{{{R_y}}}} \right)}^{{t_4}}}-2{{\left( {\frac{R}{{{R_z}}}} \right)}^{{t_4}}}} \right]\\ {D_\xi } = \frac{2}{7}{\overline A _2}(R)\left[{{{\left( {\frac{R}{{{R_x}}}} \right)}^{{t_2}}}-{{\left( {\frac{R}{{{R_y}}}} \right)}^{{t_2}}}} \right]\\ {D_\eta } = \frac{{10}}{{21}}{\overline A _4}(R)\left[{{{\left( {\frac{R}{{{R_x}}}} \right)}^{{t_4}}}-{{\left( {\frac{R}{{{R_y}}}} \right)}^{{t_4}}}} \right] $$ (8) 以上公式中,指数律[10-13]系数t2≈ 3和t4≈ 5;${\overline A _2}(R)$和${\overline A _4}(R)$为对应参考距离R =$\overline R $= (Rx+ Ry+ Rz)/3的内禀参量。Rx和Ry为垂直于C2轴的杂质—配体键长,Rz为平行于C2轴的杂质—配体键。利用PHZS晶体中的金属—配体平均键长,基于Slater型自洽场波函数可以计算出群重叠积分Sdpt ≈ 0.006 7, Sdpe ≈ 0.023 3, Sds ≈ 0.018 6, A ≈1.362 0。归一化因子Nγ和轨道混合系数λγ可由式(4)~式(6)获得。利用自由Cu2+和配体O2—离子的旋轨耦合[7]系数ζd0≈ 829 cm-1、ζp0≈ 151 cm-1,可得式(4)中的旋轨耦合系数$\varsigma $和$\varsigma '$和轨道缩小因子$k$和$k'$,所得结果如表 1所示。对于八面体晶场下的3dn离子,文献[10, 14]中广泛采用的关系式${\overline A _2}(R)$≈10${\overline A _4}(R)$也用于此处。这样,掺杂离子的结构参数Rx, Ry和Rz(特别是正交畸变)便与晶场参量(特别是四角场参量)以及杂质局部结构相关联。因此,通过分析PHZS:Cu2+的EPR,可获得PHZS晶体中Cu2+杂质中心的局域结构信息。
表 1 K2Zn(SO4)2·6H2O:Cu2+晶体的相关参数
Nt Ne λt λe λs 0.822 6 0.831 9 0.471 1 0.375 4 0.299 6 $\varsigma $ $\varsigma '$ $k$ $k'$ / 696 675 0.913 9 0.674 6 / 根据已有[Cu(H2O)6]2+基团的光谱,式(8)中光谱参量A4(R)可以取为650 cm-1。对晶体中的Cu2+离子,各向同性芯区极化常数κc一般在0.2~0.3范围,取κc≈ 0.252。此外,考虑到杂质中心正交畸变引起的各向异性3d-3s (4s)轨道混合,各向异性芯区极化常数κc′取为0.033。
拟合EPR参量理论与实验值相符,得到PHZS:Cu2+的结构参数Rx,Ry,Rz和基态轨道波函数分别为:
$${R_x} = 0.197, {\rm{ }}{R_y} = 0.213, {\rm{ }}{R_z} = 0.224$$ (9) $$\Phi = 0.82[0.978\left| {{d_{{x^2}- {y^2}}}} \right\rangle + 0.2{\rm{0}}9\left| {{d_{3{z^2}- {r^2}}}} \right\rangle $$ (10) 对应的EPR参量计算结果(Cal.c)如表 2所示。为了突出基态波函数混合和配体轨道以及旋轨耦合作用对EPR参量的贡献,忽略基态波函数混合(即取$\alpha $= 1, β = 0)的计算结果(Cal.a)以及忽略配体轨道和旋轨耦合作用所得结果(Cal.b)也一并列于表 2。表中,A因子单位为10-4 /cm;Cal. a考虑配体轨道和旋轨耦合作用,但忽略基态波函数混合对EPR参量的贡献(即取$\alpha $= 1, β = 0)的计算结果;Cal.b考虑基态波函数混合,但忽略配体轨道和旋轨耦合作用(即取ζ = ζ′ = Nζd0,k = k′ = N)的计算结果;Cal. c同时考虑配体轨道和旋轨耦合作用以及基态波函数混合的结果。
表 2 K2Zn(SO4)2·6H2O:Cu2+的EPR参量理论计算及实验值
计算和实验值 gx gy gz Ax Ay Az Cal.a 2.085 2.106 2.449 13.8 29.3 —90.6 Cal.b 2.193 2.043 2.384 —19.8 76.7 —112.4 Cal.c 2.158 2.035 2.431 —19.8 63.5 —97.5 文献[1]实验值 2.150 2.032 2.431 —19.0 60.0 —98.0
Theoretical Investigation of the EPR Spectra and Local Structures for PHZS: Cu2+
-
摘要: 采用Cu2+离子正交对称电子顺磁共振(EPR)参量的高阶微扰公式计算K2Zn(SO4)2·6H2O:Cu2+的EPR参量g因子(gx,gy,gz)和超精细结构常数(Ax,Ay,Az)。研究结果表明,K2Zn(SO4)2·6H2O中[Cu(H2O)6]2+基团的Cu2+-H2O键长分别为Rx ≈ 0.197 nm,Ry ≈ 0.213 nm,Rz ≈ 0.224 nm;中心金属离子基态波函数混合系数分别为α ≈ 0.978和β ≈ 0.209。所得EPR参量理论值与实验符合很好。Abstract: The electron paramagnetic resonance (EPR) parameters for K2Zn(SO4)2·6H2O:Cu2+, i.e. g factors (gx, gy, gz) and hyperfine structure constants (Ax, Ay, Az), are theoretically investigated by using the high-order perturbation formulas of these parameters for Cu2+ in orthorhombically elongated octahedra. Based on the calculation, the Cu2+-H2O bond-lengths of the[Cu(H2O)6]2+ cluster in K2Zn(SO4)2·6H2O crystal are found to be Rx ≈ 0.197 nm, Ry ≈ 0.213 nm, Rz ≈ 0.224 nm, and the mixing coefficients of the ground state wave function parameters areα ≈ 0.978 and β ≈ 0.209, respectively. The calculated EPR parameters show a good agreement with the experimental data.
-
表 1 K2Zn(SO4)2·6H2O:Cu2+晶体的相关参数
Nt Ne λt λe λs 0.822 6 0.831 9 0.471 1 0.375 4 0.299 6 $\varsigma $ $\varsigma '$ $k$ $k'$ / 696 675 0.913 9 0.674 6 / 表 2 K2Zn(SO4)2·6H2O:Cu2+的EPR参量理论计算及实验值
计算和实验值 gx gy gz Ax Ay Az Cal.a 2.085 2.106 2.449 13.8 29.3 —90.6 Cal.b 2.193 2.043 2.384 —19.8 76.7 —112.4 Cal.c 2.158 2.035 2.431 —19.8 63.5 —97.5 文献[1]实验值 2.150 2.032 2.431 —19.0 60.0 —98.0 -
[1] HOFFMANN S K, GOSLAR J, HILCZER W, et al. Electron spin relaxation of vibronic Cu(H2O)6 complexes in K2Zn(SO4)2·6H2O single crystals[J]. J Phys:Condens Matter, 2001, 13(4):707-718. doi: 10.1088/0953-8984/13/4/316 [2] ZHANG Zhi-hong, WU Shao-yi, HU Xian-fan, et al. Theoretical investigations of the spin Hamiltonian parameters and local angular variations for the trigonal V3+ centers in alum compounds[J]. Phys Chem Miner, 2014, 41(4):273-280. doi: 10.1007/s00269-013-0645-x [3] ZHANG Hua-ming, WU Shao-yi, KUANG Min-quan, et al. Investigation of the EPR parameters and local structures for Cu2+ in Bis(l-asparaginato) M(Ⅱ) catalysts (M=Zn, Cd, Mg)[J]. Journal of Physics & Chemistry of Solids, 2012, 73(7):846-850. http://www.sciencedirect.com/science/article/pii/S0022369712000868 [4] WU Shao-yi, GAO Xiu-ying, DONG Hui-ning. Investigations on the angular distortions around V2+ in CsMgX3(X=Cl, Br, I)[J]. Journal of Magnetism & Magnetic Materials, 2006, 306(1):67-73. http://www.sciencedirect.com/science/article/pii/S0304885305006335 [5] ZHANG Hua-ming, XIAO Wen-bo, WAN Xiong. Theoretical studies of the local structures and electron paramagnetic resonance parameters for Cu2+ center in Zn(C3H3O4)2(H2O)2 single crystal[J]. Radiation Effects & Defects in Solids, 2014, 169(7):603-609. [6] DONG H N, WU S Y, LI P. Theoretical explanation of EPR parameters for Cu2+ ion in TiO2 crystal[J]. Physica Status Solidi (b), 2004, 241(8):1935-1938. doi: 10.1002/(ISSN)1521-3951 [7] 李超英, 杨建荣. Ca(OD)2:Cu2+局部结构及自旋哈密顿参量研究[J].电子科技大学学报, 2012, 41(3):405-407. doi: 10.3969/j.issn.1001-0548.2012.03.016 LI Chao-ying, YANG Jian-rong. Theoretical explanation of the local structures and spin Hamiltonian parameters in Ca(OD)2 of the tetragonal Cu2+ center[J]. Journal of University of Electronic Science & Technology of China, 2012, 41(3):405-407. doi: 10.3969/j.issn.1001-0548.2012.03.016 [8] ZHANG H M, WAN X, ZHANG Z M. Theoretical studies of the spin Hamiltonian parameters and local structures for the tetragonal Cu2+ and Ni3+ centers in Mg2TiO4[J]. Journal of Structural Chemistry, 2013, 549:226-230. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0228641578 [9] NEWAN D J, NG B. The superposition model of crystal fields[J]. Reports on Progress in Physics, 1989, 52(6):699-762. doi: 10.1088/0034-4885/52/6/002 [10] 董会宁, 王珏, 孙雷, 等.钛酸铅晶体中3种Cu2+离子中心的电子顺磁共振研究[J].重庆邮电大学学报, 2007, 19(6):762-763. http://d.old.wanfangdata.com.cn/Periodical/cqydxyxb-zrkx200706029 DONG Hui-ning, WANG Jue, SUN Lei, et al. Investigation of spin Hamitonian parameters for bivalent copper ion in Lead Titanate Crtstal[J]. Journal of Chongqing University of Posts & Telecommunications, 2007, 19(6):762-763. http://d.old.wanfangdata.com.cn/Periodical/cqydxyxb-zrkx200706029 [11] KUANG Min-quan, WU Shao-yi, ZHANG Hua-ming. Theoretical studies on the local structure and spin Hamiltonian parameters for the orthorhombic Cu2+ center in LiNbO3[J]. J Phys Chem Solids, 2012, 73(18):1601-1604. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0227807591 [12] WU Shao-yi, DONG Hui-ning, WEI W H. Investigation of the Spin Hamiltonian Parameters and the Local Structure of Two Ni3+ Centers in KTaO3[J]. Z Naturforsch 2004, 59a:203-208. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zna-2004-4-503 [13] DONG Hui-ning, WU X X, WU Shao-yi, et al. Studies on defect structures of Mn2+ and Fe3+ impurity centers in ZnO crystals[J]. Acta Phys Sin, 2002, 51(3):616-619. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wlxb200203029 [14] 李超英, 付金仙, 董明, 等. DHMS中掺杂Cu2+电子顺磁共振参量及局部结构[J].电子科技大学学报, 2016, 45(3):361-364. doi: 10.3969/j.issn.1001-0548.2016.02.008 LI Chao-ying, FU Jin-xian, DONG Ming, et al. Theoretical investigation of the electron paramagnetic resonance parameters and local structures for DHMS:Cu2+[J]. Journal of University of Electronic Science & Technology of China, 2016, 45(3):361-364. doi: 10.3969/j.issn.1001-0548.2016.02.008 [15] PETRASHEN V E, YABLOKOV Y V, DAVIDOVICH R L. The lattice structure parameters and configuration of Cu2+ Jahn-Teller centres in tutton salt crystals[J]. Phys Status Solidi (b), 1980, 101(1):117-125. doi: 10.1002/(ISSN)1521-3951 [16] MCGARVEY B R. The isotropic hyperfine interaction[J]. J Phys Chem, 1967, 71(1):51-66. doi: 10.1021/j100860a007 [17] ABRAGAM A, BLEANEY B. Electron paramagnetic resonance of transition Ions[M]. Oxford:Clarendon Press, 1970.