-
由于当今对超宽带系统的大量需求,超宽带带通滤波器作为一个关键的器件已经得到了学术界和工业界的广泛关注。为了满足带宽,小型化和好的带外特性的要求已经被提出。文献[1]首次提出了一种基于阶跃阻抗形式的多模谐振器制作的超宽带滤波器。为了在通带两端分别产生两个传输零点,文献[2-3]分别应用了两种特殊的多模谐振器。文献[4-5]分别展示了由3个开路枝节组成的多模谐振器滤波器和3对开路枝节组成的多模谐振器滤波器,这些谐振器在通带内都是产生4个模式。文献[6]展示了一种3对圆形终端直接加载谐振器组成的滤波器,上阻带中25.5 GHz以下插入损耗大于20 dB。文献[7]提出了一种4个T形枝节加载的环形谐振器组成的滤波器,这种滤波器拥有4个谐振模式,利用这种结构很容易调整通带高频端的表现特性。文献[8]提出了一种短路枝节加载形成的多模谐振器,利用这种谐振器组成的滤波器有很好的带外表现。文献[9-10]分别利用多枝节和双枝节结构提出了两种五模谐振器,以此将5个谐振模式放置在期望的通带内。
本文在文献[11]的基础上提出了一种基于新型3对扇形枝节加载谐振器的超宽带滤波器。这种利用扇形枝节加载的谐振器的滤波器既可以实现美国联邦通信委员会(FCC)规定的超宽带频段(3.1~10.6 GHz)同时还可以得到很宽广的上阻带特性。该种谐振器的滤波器上阻带特性的表现比已有滤波器的表现更加完美。此外,在设计这种基于新型扇形枝节加载谐振器的滤波器时,只需对少量几个变量进行调整,设计过程比较简单。
-
通过上述分析,利用本文所提及的新型扇形枝节加载谐振器可设计超宽带滤波器。本文利用Roger’s RT/Duroid 5880 (介电常数2.2,基板厚度0.508 mm)介质基板设计并制作了一个超宽带滤波器。图 1中的滤波器参数确定如下:l1=8.35 mm,l2=4.34 mm,l3=2.9 mm,s1=0.1 mm,w1=1.1 mm,w2=0.27 mm,rc=2.92 mm,rs=1.67 mm,${\alpha _c}$=58°,${\alpha _s}$=63°。滤波器的尺寸大约在0.64$\lambda g$×0.12$\lambda g$,$\lambda g$为中心频率工作波长。加工好的超宽带滤波器被封装到一个金属腔中。
滤波器的仿真结果由HFSS全波电磁仿真软件建模仿真完成,测试结果应用Agilent E8363B矢量网络分析仪测试得出。图 4展示了仿真与测试S参数结果的对比图,群时延特性的仿真与测试结果对比图。从图中可以看出,仿真结果与测试结果有很好的一致性。一些误差可能导致的原因是加工中的误差和仿真中金属的参数近似设定。超宽带滤波器的3 dB带宽为3~10.6 GHz,相对带宽为134%。滤波器(包含两端测试用的2.4 mm连接器)的中心频率的插入损耗为0.5 dB,通带内部的回波损耗大于12 dB。通过测试可知,利用本文提及的新型谐振器的滤波器上阻带表现特性比文献[11]的滤波器有明显提升,在40 GHz以下阻带内插入损耗大于14 dB。此外,测量所得的通带内群时延小于0.8 ns。
同时,基于这种新型扇形枝节加载谐振器的滤波器在上阻带特性的表现比已有滤波器的表现更加完美,详见表 1。
表 1 代表性引文中滤波器参数指标对比
滤波器 PB/GHz 3dB
FBW/%RL/dB IL/dB S21/dB
out of band文献[4] 2.80~10.27 114 >14.3 <1.4 <-14.3
(10.49~14.9 GHz)文献[6] 2.8~10.2 NG >9.0 NG <-20
(11~25.5 GHz)文献[8] 2.3~10.0 125 >12.5 NG <-10
(11~20 GHz)文献[9] 3.1~11.1 117 >10 NG <-20
(11.5~17.1 GHz)文献[11] 3.4~10.5 102 >11.5 <1.8 <-23
(11~26.5 GHz)本文 3~10.6 134 >12 <0.5 <-14
(10.97~40 GHz)
Compact Ultra-Wideband Filter Using Novel Radial-Stub-Loaded Resonator (RSLR)
-
摘要: 该文提出了一种基于新型扇形枝节加载谐振器的改进上阻带特性的小型化超宽带带通滤波器。该新型多模谐振器由一根高阻微带线上连接三对扇形分流枝节组成。适当调节扇形枝节的尺寸,扇形枝节加载谐振器的谐振频率可以粗略的放置在超宽带频段内(3.1~10.6 GHz)。为了加强耦合度,在滤波器的输入和输出端使用了交指型耦合馈线。此外还给出了该滤波器的设计方法和步骤。最后,给出了滤波器的设计和拓扑结构。测量结果和全波仿真结果有很好地一致性。Abstract: A compact ultra-wideband (UWB) bandpass filter (BPF) with improved upper-stopband performance using novel radial-stub-loaded resonator (RSLR) is proposed. The multiple-mode resonator (MMR) is formed by loading three pairs of radial-stubs in shunt to a high impedance microstrip line. By properly adjusting the dimensions of these radial-stubs, the resonant modes of RSLR can be roughly allocated in the UWB passband (3.1~10.6 GHz). To enhance the coupling degree, two interdigital coupled feed lines are utilized in this filter. The design steps of this filter have also been presented. Finally, a prototype of the proposed filter has been designed and fabricated. The measured results are in good agreement with full-wave simulated results.
-
表 1 代表性引文中滤波器参数指标对比
滤波器 PB/GHz 3dB
FBW/%RL/dB IL/dB S21/dB
out of band文献[4] 2.80~10.27 114 >14.3 <1.4 <-14.3
(10.49~14.9 GHz)文献[6] 2.8~10.2 NG >9.0 NG <-20
(11~25.5 GHz)文献[8] 2.3~10.0 125 >12.5 NG <-10
(11~20 GHz)文献[9] 3.1~11.1 117 >10 NG <-20
(11.5~17.1 GHz)文献[11] 3.4~10.5 102 >11.5 <1.8 <-23
(11~26.5 GHz)本文 3~10.6 134 >12 <0.5 <-14
(10.97~40 GHz) -
[1] ZHU L, SUN S, MENZEL W. Ultra-wideband (UWB) bandpass filters using multiple-mode resonator[J]. IEEE Microwave and Wireless Components Letters, 2005, 15(11):796-798. doi: 10.1109/LMWC.2005.859011 [2] ZHU L, MENZEL W. Compact microstrip bandpass filter with two transmission zeros using a stub-tapped half-wavelength line resonator[J]. IEEE Microwave and Wireless Components Letters, 2003, 13(1):16-18. doi: 10.1109/LMWC.2002.807705 [3] LI L, LI Z F, WEI Q F. A quasi-elliptic wideband bandpass filter using a novel multiple-mode resonator constructed by an asymmetric compact microstrip resonant cell[J]. Microwave and Optical Technology Letters, 2009, 51(3):713-714. doi: 10.1002/mop.v51:3 [4] LI R, ZHU L. Compact UWB bandpass filter using stub-loaded multiple-mode resonator[J]. IEEE Microwave and Wireless Components Letters, 2007, 17(1):40-42. doi: 10.1109/LMWC.2006.887251 [5] WONG S W, ZHU L. EBG-embedded multiple-mode resonator for UWB bandpass filter with improved upper-stopband performance[J]. IEEE Microwave and Wireless Components Letters, 2007, 17(6):421-423. doi: 10.1109/LMWC.2007.897788 [6] YAO B, ZHOU Y, CAO Q, et al. Compact UWB bandpass filter with improved upper-stopband performance[J]. IEEE Microwave and Wireless Components Letters, 2009, 19(1):27-29. doi: 10.1109/LMWC.2008.2008558 [7] XU K D, ZHANG Y H, LI J L W, et al. Compact ultra-wideband bandpass filter using quad-T-stub-loaded ring structure[J]. Microwave and Optical Technology Letters, 2014, 56(9):1988-1991. doi: 10.1002/mop.v56.9 [8] WONG S W, ZHU L. UWB bandpass filters using short-circuited shunt stub-embedded multiple-mode resonators[J]. Microwave and Optical Technology Letters, 2009, 51(11):2556-2559. doi: 10.1002/mop.v51:11 [9] CHU Q X, WU X H, TIAN X K. Novel UWB bandpass filter using stub-loaded multiple-mode resonator[J]. IEEE Microwave and Wireless Components Letters, 2011, 21(8):403-405. doi: 10.1109/LMWC.2011.2160526 [10] OH S, SHIN B, JEONG J, et al. UWB bandpass filter using dual stepped impedance stub loaded resonators[J]. Microwave and Optical Technology Letters, 2014, 56(2):448-450. doi: 10.1002/mop.v56.2 [11] DENG X D, XU K D, WANG Z G, et al. Novel microstrip ultra-wideband bandpass filter using radial-stub-loaded structure[J]. The Applied Computational Electromagnetics Society Express Journal, 2016, 1(1):20-23.