-
相控阵天线以其小型化和高度集成化的技术优势而得到迅速发展。天线阵面排列大量T/R组件,组件中高功率放大器等电子元器件对温度敏感,因此阵面温度分布不均会导致T/R组件的相位不一致,从而影响甚至损坏天线性能[1]。控制阵面各组件的温度均匀性将是天线热控设计面临的重要难题。
文献[2]采用集成微通道冷板对某相控阵雷达实现了高效的散热管理。文献[3]对某型机载相控阵天线散热问题进行了分析研究,使阵面平均温差不超过10 ℃。文献[4]为提高相控阵雷达的散热能力,分析了平直型微通道截面尺寸因素和流体入口条件对其换热系数的影响。文献[5]设计了面向四通道T/R组件的S型流道冷板与阶梯出入口Z型流道冷板,表明通过调整流道结构参数能够有效降低芯片最高温度。文献[6]提出优化微通道截面形状可以减低芯片表面最高温度。文献[7]认为采用构形理论设计的流道具有“最优”的散热性能,提出流道拓扑结构优化是提高冷板均温性的有效途径。文献[8]通过实验验证了构造树形微通道比传统S型流道在传热和压降方面具有更好的优势。文献[9]研究了树形流道分叉结构的生成原理,分析得到流道分级级数不断增加、散热性能不断提升的规律。文献[10-12]分别探索了树形分形最优结构设计,研究了分形流道的结构参数对流量分布的影响。文献[13]分析比较了不同微通道拓扑结构对芯片散热效果的影响,发现树形微通道散热的芯片温度最低且分布最均匀。
迄今为止的研究主要集中于提高微通道冷板的散热能力,对改善天线阵面的温度均匀性关注较少。实际上,微通道的散热能力已经达到较高水平,能够满足大部分相控阵天线的散热要求。相较而言,相控阵天线阵面温度均匀性将直接影响天线的工作性能,因此研究冷板流道的拓扑结构以改善多热源的温度均匀性显得更加重要。本文从流道拓扑结构设计的角度出发,基于已有的S型流道和分形流道提出了S型微通道结构、类树形分叉横向微通道结构和T型纵向微通道结构,以温度标准差为指标分析了这3种结构的温度均匀性,为多热源相控阵天线的热设计提供了参考。
-
为便于比较各拓扑结构的性能,设定3种结构采用相同的冷板材料、外形尺寸、冷却液工质及热源功耗。
-
冷板热仿真几何模型如图 6所示,冷板尺寸均为133.5 mm×132.5 mm×10 mm,出入口直径均为3.5 mm。为简化计算,热源采用尺寸均为5 mm× 7 mm×1.2 mm的芯片,且每个芯片规格相同,数量为20,冷却液为水,入口温度为20 ℃。设定流道内为三维稳态充分发展的层流,通道壁面光滑,流体不可压缩,不会随着温度的升高发生相变,流体的物性均为常数。无内热源,不计重力,能量方程中忽略黏性耗散和辐射换热。
-
衡量热源温度均匀性的指标包括极差(R)和标准差(σ),其表达式分别为:
$$ R = {x_{\max }} - {x_{\min }} $$ (1) $$ \sigma = \sqrt {\frac{1}{n}\sum\limits_{i = 1}^n {{{({x_i} - \bar x)}^2}} } $$ (2) 式中,n为热源数量;xi为每个热源中心温度;x为所有热源的平均温度;xmax为所有热源的最高温度;xmin为所有热源的最低温度。从数值上看R≥σ,极差仅指明了热源温度的最大范围,而标准差能较准确地反映各热源温度的离散程度,标准差越小,说明热源温度的波动越小,越稳定。因此本文同文献[15]一样选择σ为衡量热源温度均匀性的指标。
分别计算3种拓扑结构在相同工况下的热源温度。当入口流量为0.4 L/min,总功率为256 W时,T型纵向微通道冷板的热源温度均匀性最好,其温度标准差为1.13 ℃;其次为类树形分叉横向微通道结构,其温度标准差为1.75 ℃;S型微通道结构,其温度标准差为2.24 ℃。从图 7可以看出,流道拓扑结构对热源温度分布有重要影响。S型微通道结构的热源温度呈现左侧低、右下侧高的特点;类树形分叉横向微通道结构的热源温度得到了改善,每列4个热源的温度较均匀,而横向热源温差明显;T型纵向微通道结构的热源温度分布最优,中间一列热源的温度最低。从图 8可以看出,S型微通道结构压降远大于其他两种结构,类树形分叉横向微通道结构和T型纵向微通道结构的压力分布更均匀。
Topology Design of Microchannel Heat Sink for Phased Array Antenna Cooling with Multiple Sources
-
摘要: 该文为解决相控阵天线阵面的温度不均,设计了S型微通道、类树形分叉横向微通道和T型纵向微通道3种拓扑结构。以多热源温度均匀性为设计指标,利用数值仿真分析了3种微通道拓扑结构的性能,结果表明T型纵向微通道冷板的热源温度均匀性最优。通过实验验证了T型纵向微通道结构的优越性,并且得出了多热源温度均匀性随着热源总功率的提高而降低,随入口流量的增加而提高的规律,为多热源相控阵天线的热设计提供了依据。Abstract: In order to solve the temperature non-uniformity on phased array antenna, three topology structures are designed, including:microchannel based on S type, horizontal micro-channel based on similar tree bifurcation, and longitudinal microchannel based on T type. Numerical simulation is carried on to study the temperature uniformity of three microchannel heat sinks with multiple sources. The results show that longitudinal microchannel based on T type has the best uniformity of temperature which is verified by the experiment, and the temperature uniformity is reduced as the total power goes up, yet improved with the increase of inlet flow rate. The study provides a useful reference for the thermal design of phased array antenna with multiple sources.
-
Key words:
- microchannel heat sink /
- multiple sources /
- phased array antenna /
- temperature uniformity
-
[1] 宋东升.基于神经网络的相控阵天线热变形研究[D].西安: 西安电子科技大学, 2010 http://cdmd.cnki.com.cn/Article/CDMD-10701-2010083133.htm SONG Dong-sheng. Research of thermal deformation of phased array antenna based on artificial neural network[D]. Xi'an: Xidian University, 2010. http://cdmd.cnki.com.cn/Article/CDMD-10701-2010083133.htm [2] REVANKAR U K, SREENIVASULU K, VEERABHADRA K M, et al. An experimental active aperture array for L-band high power active phased array radar[C]//IEEE International Symposium on Phased Array Systems & Technology[S.l.]: IEEE, 2003. [3] 糜勇, 孙费梅.机载有源相控阵天线冷却技术研究[C]//2005年机械电子学学术会议.海口: [s.n.], 2006: 306-309. MI Yong, SUN Fei-mei. Study of the airborne active electronic scan array antenna on cooling technology[C]//Proceedings of the Academic Conference on Mechanical Electronics. Haikou: [s.n.], 2006: 306-309. [4] 王从思, 宋正梅, 康明魁, 等.微通道冷板在有源相控阵天线上的应用[J].电子机械工程, 2013, 29(1):1-4. doi: 10.3969/j.issn.1008-5300.2013.01.001 WANG Cong-si, SONG Zheng-mei, KANG Ming-kui, et al. Application of microchannel cold plate to active phased array antenna[J]. Electro-Mechanical Engineering, 2013, 29(1):1-4. doi: 10.3969/j.issn.1008-5300.2013.01.001 [5] 李兆.基于S型与Z型流道冷板的有源相控阵天线热设计研究[D].西安: 西安电子科技大学, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10701-1014328380.htm LI Zhao. On thermal design of active phased array antennas cold plate with S-type and Z-type channels[D]. Xi'an: Xidian University, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10701-1014328380.htm [6] YANG Da-wei, WANG Yan, DING Gui-fu, et al. Numerical and experimental analysis of cooling performance of single-phase array microchannel heat sinks with different pin-fin configurations[J]. Applied Thermal Engineering, 2017, 112:1547-1556. doi: 10.1016/j.applthermaleng.2016.08.211 [7] REVELLIN R, THOME J R, BEJAN A, et al. Constructal tree-shaped microchannel networks for maximizing the saturated critical heat flux[J]. International Journal of Thermal Sciences, 2009, 48(2):342-352. doi: 10.1016/j.ijthermalsci.2008.06.009 [8] CHEN Yong-ping, ZHANG Cheng-bin, SHI Ming-heng, et al. Thermal and hydrodynamic characteristics of constructal tree-shaped minichannel heat sink[J]. AIChE Journal, 2010, 56(8):2018-2029. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c7b72c3193b434b4917c786af1ce947c [9] WECHSATOL W, LORENTE S, BEJAN A. Optimal tree-shaped networks for fluid flow in a disc-shaped body[J]. International Journal of Heat & Mass Transfer, 2002, 45(25):4911-4924. https://www.sciencedirect.com/science/article/pii/S0017931002002119 [10] ALHARBI A Y, PENCE D V, CULLION R N. Thermal characteristics of microscale fractal-like branching channels[J]. Journal of Heat Transfer, 2004, 126(5):744-752. doi: 10.1115/1.1795236 [11] HEYMANN D, PENCE D, NARAYANAN V. Optimization of fractal-like branching microchannel heat sinks for single-phase flows[J]. International Journal of Thermal Sciences, 2010, 49(8):1383-1393. doi: 10.1016/j.ijthermalsci.2010.01.015 [12] GHAEDAMINI H, SALIMPOUR M R, MUJUMDAR A S. The effect of svelteness on the bifurcation angles role in pressure drop and flow uniformity of tree-shaped microchannels[J]. Applied Thermal Engineering, 2011, 31(5):708-716. doi: 10.1016/j.applthermaleng.2010.10.005 [13] 徐尚龙, 秦杰, 胡广新.芯片冷却用微通道散热结构热流耦合场数值研究[J].中国机械工程, 2011, 22(23):2863-2866. http://d.old.wanfangdata.com.cn/Periodical/zgjxgc201123019 XU Shang-long, QIN Jie, HU Guang-xin. Numerical study on heat-flow coupling field in microchannel heat sink structures for electronic chip cooling[J]. China Mechanical Engineering, 2011, 22(23):2863-2866. http://d.old.wanfangdata.com.cn/Periodical/zgjxgc201123019 [14] WANG Xiang-qi, MUJUMDAR A S, YAP C. Numerical analysis of blockage and optimization of heat transfer performance of fractal-like microchannel nets[J]. Journal of Electronic Packaging, 2006, 128:38-45. doi: 10.1115/1.2159007 [15] CHO E S, CHOI J W, YOON J S, et al. Experimental study on microchannel heat sinks considering mass flow distribution with non-uniform heat flux conditions[J]. International Journal of Heat and Mass Transfer, 2010(53):2159-2168. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0215823568/