Abstract:
In recent years, various recommendation methods have been proposed by referring to processes originated in statistical physics, among them the diffusion-based method is an important branch of study. However, these methods were proposed solely based on rating metrics, while the trust relations among users are always ignored. In this paper, we propose a novel information filtering algorithm by introducing users' social trust relationships into the original diffusion-based method based on the resource-allocation process. Specifically, a tunable parameter is used to scale the resources received by trusted users in the networked resource redistribution process. The objects collected by trusted users will receive more resources. Extensive experiments on the two real-world rating and trust datasets, Epinions and FriendFeed, suggest that the proposed algorithm has better performance than benchmark algorithms in terms of accuracy, diversity, and novelty in the recommendation.