[1]
|
RAZA S, DING C. Progress in context-aware recommender systems-an overview[J]. Computer Science Review, 2019, 31:84-97. |
[2]
|
SUNDERMANN C V, DOMINGUES M A, SINOARA R A, et al. Using opinion mining in context-aware recommender systems:A systematic review[J]. Information, 2019, 10(2):1-45. |
[3]
|
XU Ming-hua, LIU Sheng-hao. Semantic-enhanced and context-aware hybrid collaborative filtering for event recommendation in event-based social networks[J]. IEEE Access, 2019, 7:17493-17502. |
[4]
|
VILLEGAS N M, SÁNCHEZ C, DÍAZ-CELY J, et al. Characterizing context-aware recommender systems:a systematic literature review[J]. Knowledge-Based Systems, 2017, 140:173-200. |
[5]
|
ZHANG Shu-ai, YAO Li-na, SUN Ai-xin, et al. Deep learning based recommender system:A survey and new perspectives[J]. ACM Computing Surveys, 2019, 52(1):1-38. |
[6]
|
TAMINE L, DAOUD M. Evaluation in contextual information retrieval:foundations and recent advances within the challenges of context dynamicity and data privacy[J]. ACM Computing Surveys, 2018, 51(4):1-36. |
[7]
|
WU Li-bing, QUAN Cong, LI Chen-liang, et al. A context-aware user-item representation learning for item recommendation[J]. ACM Transactions on Information Systems, 2019, 37(2):2201-2229. |
[8]
|
ALIANNEJADI M, CRESTANI F. Personalized context-aware point of interest recommendation[J]. ACM Transactions on Information Systems, 2018, 36(4):1-28. |
[9]
|
VERBERT K, MANOUSELIS K, OCHOA X, et al. Context-aware recommender systems for learning:A survey and future challenges[J]. IEEE Transactions on Learning Technologies, 2012, 5(4):318-335. |
[10]
|
ABBAS A, ZHANG L, KHAN S U. A survey on context-aware recommender systems based on computational intelligence techniques[J]. Computing, 2015, 97(7):667-690. |
[11]
|
VILLEGAS N M, MÜLLER H A. Managing dynamic context to optimize smart interactions and services in the smart internet[M]. Berlin:Springer, 2010. |
[12]
|
ADOMAVICIUS G, SANKARANARAYANAN R, SEN S, et al. Incorporating contextual information in recommender systems using a multidimensional approach[J]. ACM Transactions on Information Systems, 2005, 23(1):103-145. |
[13]
|
ODIĆ A, TKALČIČ M, TASIČ J F, et al. Predicting and detecting the relevant contextual information in a movie-recommender system[J]. Interacting with Computers, 2013, 25(1):74-90. |
[14]
|
KARATZOGLOU A, AMATRIAIN X, OLIVER N. Multiverse recommendation:n-dimensional tensor factorization for context-aware collaborative filtering[C]//Proceedings of the fourth ACM conference on Recommender systems. Barcelona, Spain:ACM, 2010:79-86. |
[15]
|
BALTRUNAS L, LUDWIG B, PEER S, et al. Context relevance assessment and exploitation in mobile recommender systems[J]. Personal and Ubiquitous Computing, 2012, 16(5):507-526. |
[16]
|
TAO Mei, YANG Bo, HUA Xian-sheng, et al. Contextual video recommendation by multimodal relevance and user feedback[J]. ACM Transactions on Information Systems, 2011, 29(2):1-24. |
[17]
|
CHEN Kai-long, CHEN Tian-qi, ZHENG Guo-qing, et al. Collaborative personalized tweet recommendation[C]//Proceedings of the 35th International ACM SIGIR Conference on Research and Development in Information Retrieval. Portland, USA:ACM, 2012:661-670. |
[18]
|
LI Li-hong, CHU Wei, LANGFORD J, et al. A contextual-bandit approach to personalized news article recommendation[C]//Proceedings of the 19th international conference on World Wide Web. North Carolina, USA:ACM, 2010:661-670. |
[19]
|
CAI Rui, ZHANG Chao, WANG Chong, et al. Musicsense:Contextual music recommendation using emotional allocation modeling[C]//Proceedings of the 15th ACM international conference on Multimedia. Augsburg, Germany:ACM, 2007:553-556. |
[20]
|
HAN Jia-wen, GEORGE C, ZHENG Ding-ding, et al. Sentiment pen:Recognizing emotional context based on handwriting features[C]//Proceedings of the 10th Augmented Human International Conference 2019. Reims, France:ACM, 2019:241-248. |
[21]
|
PARENT J, KIM Y. Towards socially intelligent HRI systems:Quantifying emotional, social, and relational context in real-world human interactions[C]//2017 AAAI Fall Symposium Series. Virginia, USA:AAAI, 2017:104-108. |
[22]
|
SASSI I B, YAHIA S B, MELLOULI S. Fuzzy classification-based emotional context recognition from online social networks messages[C]//Proceedings of IEEE International Conference on Fuzzy Systems. Naples, Italy:IEEE, 2017:1-6. |
[23]
|
GONZÁLEZ G, JOSEP L D L R, MONTANER M, et al. Embedding emotional context in recommender systems[C]//Proceedings of International Conference on Data Engineering. Istanbul, Turkey:IEEE, 2007:845-852. |
[24]
|
DU Rong, YU Zhi-wen, TAO Mei, et al. Predicting activity attendance in event-based social networks:Content, context and social influence[C]//Proceedings of the 2014 ACM international joint conference on pervasive and ubiquitous computing. Washington, USA:ACM, 2014:425-434. |
[25]
|
HSIEH W T, KU T, WU Chen-ming, et al. Social event radar:A bilingual context mining and sentiment analysis summarization system[C]//Proceedings of the ACL 2012 System Demonstrations. Jeju, Korea:ACL, 2012:163-168. |
[26]
|
QIAO Zhi, ZHANG Peng, ZHOU Chuan, et al. Event recommendation in event-based social networks[C]//Proceedings of twenty-eighth AAAI Conference on Artificial Intelligence. Québec, Canada:AAAI, 2012:3130-3131. |
[27]
|
MACEDO A Q, MARINHO L B, SANTOS R L T. Context-Aware Event Recommendation in Event-based Social Networks[C]//Proceedings of the 9th ACM Conference on Recommender Systems. Vienna, Austria:ACM, 2015:123-130. |
[28]
|
CHEN C C, SUN Yu-chun. Exploring acquaintances of social network site users for effective social event recommendations[J]. Information Processing Letters, 2016, 116(3):227-236. |
[29]
|
ZHANG Wei, WANG Jian-yong, WEI Feng. Combining latent factor model with location features for event-based group recommendation[C]//Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining. Chicago, USA:ACM, 2013:910-918. |
[30]
|
BOFFA S, MAIO D, GERLA B, et al. Context-aware advertisement recommendation on twitter through rough sets[C]//2018 IEEE International Conference on Fuzzy Systems. Rio de Janeiro, Brazil:IEEE, 2018:1-8. |
[31]
|
HARUNA K, AKMAR M I, SUHENDROYONO S, et al. Context-aware recommender system:A review of recent developmental process and future research direction[J]. Applied Sciences, 2017, 7(12):1211. |
[32]
|
SARKER I H. Research issues in mining user behavioral rules for context-aware intelligent mobile applications[J]. Iran Journal of Computer Science, 2018, 2(1):41-51. |
[33]
|
WANG Xiao-liang, WANG Wei, JIN Zhan-peng. Context-aware reinforcement learning-based mobile cloud computing for telemonitoring[C]//Proceedings of 2018 IEEE EMBS International Conference on Biomedical and Health Informatics. Nevada, USA:IEEE, 2018:426-429. |
[34]
|
LAß C, HERZOG D, WÖRNDL W. Context-aware tourist trip recommendations[C]//WOPS'02:Proceedings of the 2nd Workshop on Recommenders in Tourism co-located with 11th ACM Conference on Recommender Systems (RecSys 2017). Como, Italy:ACM, 2017:18-25. |
[35]
|
LAMBUSCH F, FELLMANN M. Towards context-aware assistance for smart self-management of knowledge workers[C]//WOPS'02:CEUR Workshop Proceedings co-located in 17th International Conference Perspectives in Business Informatics Research. Stockholm, Sweden:Springer, 2018:1-12. |
[36]
|
AWAN R, KOOHBANANI N A, SHABAN M, et al. Context-aware learning using transferable features for classification of breast cancer histology images[C]//Proceedings of International Conference on Image Analysis and Recognition. Varzim, Portugal:Springer, 2018:788-795. |
[37]
|
GUO Yang-yang, CHENG Zhi-yong, NIE Li-qiang, et al. Attentive long short-term preference modeling for personalized product search[J]. ACM Transactions on Information Systems, 2019, 37(2):1-19. |
[38]
|
VIKTORATOS I, TSADIRAS A, BASSILIADES N. Combining community-based knowledge with association rule mining to alleviate the cold start problem in context-aware recommender systems[J]. Expert systems with applications, 2018, 101:78-90. |
[39]
|
ZHU Qi-liang, WANG Shang-guang, CHENG Bo, et al. Context-aware group recommendation for point-of-interests[J]. IEEE Access, 2018, 6:12129-12144. |
[40]
|
LIU Zheng, XIE Xing, CHEN Lei. Context-aware Academic Collaborator Recommendation[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. London, United Kingdom:ACM, 2018:1870-1879. |
[41]
|
BEUTEL A, COVINGTON P, JAIN S, et al. Latent cross:making use of context in recurrent recommender systems[C]//Proceeding of eleventh International Conference on Web Search and Data Mining. Marina Del Rey, USA:ACM, 2018:46-54. |
[42]
|
HE Qi, PEI Jian, DANIEL K, et al. Context-aware citation recommendation[C]//Proceedings of 2010 international conference on World Wide Web. North Carolina, USA:ACM, 2010:421-430. |
[43]
|
PHUONG T M, LIEN D T, PHUONG N D. Graph-based context-aware collaborative filtering[J]. Expert Systems with Applications, 2019, 126:9-19. |
[44]
|
XU Ming-hua, LIU Sheng-hao. Semantic-enhanced and context-aware hybrid collaborative filtering for event recommendation in event-based social networks[J]. IEEE Access, 2019, 7:17493-17502. |
[45]
|
HERLOCKER J L, KONSTAN J A. Content-independent task-focused recommendation[J]. IEEE Internet Computing, 2001, 5(6):40-47. |
[46]
|
ADOMAVICIUS G, TUZHILIN A. Toward the next generation of recommender systems:A survey of the state-of-the-art and possible extensions[J]. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(6):734-749. |
[47]
|
PEI Chang-hua, ZHANG Yi, ZHANG Yong-feng, et al. Personalized context-aware re-ranking for e-commerce recommender systems[EB/OL].[2019-07-23]. https://arxiv.org/abs/1904.06813. |
[48]
|
YANG Jing-xuan, XU Jun, TONG Jian-zhuo, et al. Pre-training of context-aware item representation for next basket recommendation[EB/OL].[2019-04-14]. https://arxiv.org/abs/1904.12604 |
[49]
|
VILLEGAS NM, SÁNCHEZ C, DÍAZ-CELY J, et al. Characterizing context-aware recommender systems:A systematic literature review[J]. Knowledge-Based Systems, 2018, 140:173-200. |
[50]
|
BALTRUNAS L, LUDWIG B, RICCI F. Matrix factorization techniques for context aware recommendation[C]//Proceeding of 2011 conference on recommender systems. Chicago, USA:ACM, 2011:301-304. |
[51]
|
TANG Ji-liang, GAO Hui-ji, HU Xia, et al. Context-aware review helpfulness rating prediction[C]//Proceeding of seventh International Conference on Recommender Systems. HongKong, China:ACM, 2013:1-8. |
[52]
|
JIANG Meng, CUI Peng, WANG Fei, et al. Scalable recommendation with social contextual information[J]. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(11):2789-2802. |
[53]
|
REN Xing-yi, SONG Mei-na, E Hai-hong, et al. Context-aware probabilistic matrix factorization modeling for point-of-interest recommendation[J]. Neurocomputing, 2017, 241:38-55. |
[54]
|
SI Ya-li, ZHANG Fu-zhi, LIU Wen-yuan. An adaptive point-of-interest recommendation method for location-based social networks based on user activity and spatial features[J]. Knowledge-Based Systems, 2019, 163:267-282. |
[55]
|
UNGER M, BAR A, SHAPIRA B, et al. Towards latent context-aware recommendation systems[J]. Knowledge-Based Systems, 2016, 104:165-178. |
[56]
|
ZHENG Yong, MOBASHER B, BURKE R. et al. CSLIM:Contextual SLIM recommendation algorithms[C]//Proceedings of the eighth ACM Conference on Recommender Systems. California:ACM, 2014:301-304. |
[57]
|
LI Xiang, WANG Zhi-jian, WANG Liu-yang, el al. A multi-dimensional context-aware recommendation approach based on improved random forest algorithm[J]. IEEE Access, 2018, 6:45071-45085. |
[58]
|
HU Bin-bin, SHI Chuan, ZHAO W X, et al. Leveraging meta-path based context for top-N recommendation with a neural co-attention model[C]//Proceedings of the twenty fourth International Conference on Knowledge Discovery and Data Mining. London, UK:ACM, 2018:1531-1540. |
[59]
|
ZOLAKTAF Z, BABANEZHAD R, POTTINGER R. A generic top-N recommendation framework for Trading-off Accuracy, Novelty, and Coverage[C]//Proceedings of the thirty fourth International Conference on Data Engineering. Paris, France:ICDE, 2018:149-160. |
[60]
|
GU Yu-long, SONG Jia-xing, LIU Wei-dong, et al. Context aware matrix factorization for event recommendation in event-based social networks[C]//Proceeding of 2016 International Conference on Web Intelligence. Ohama, USA:IEEE, 2016:248-255. |
[61]
|
TONG Man, SHEN Hua-wei, HUANG Jun-ming, et al. Context-adaptive matrix factorization for multi-context Recommendation[C]//Proceedings of the twenty fourth ACM International Conference on Information and Knowledge Management. Melbourne, Australia:ACM, 2015:901-910. |
[62]
|
GU Yu-long, SONG Jia-xing, LIU Wei-dong, et al. CAMF:Context aware matrix factorization for social recommendation[J]. Web Intelligence, 2018, 16(1):53-71. |
[63]
|
GOODFELLOW I, BENGIO Y, COURVILLE A. Deep learning[M]. New York:MIT press, 2016. |
[64]
|
WU Chao-yuan, AHMED A, BEUTEL A, et al. Recurrent Recommender Networks[C]//Proceedings of the tenth International ACM Conference on Web Search and Data Mining. Cambridge, United Kingdom:WSDM, 2017:495-503. |
[65]
|
TANG Jia-xi, WANG Ke. Personalized top-N sequential recommendation via convolutional sequence embedding[C]//Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining.[S.l.]:ACM, 2018:565-573. |
[66]
|
CANTADOR I, BELLOGÍN A, VALLET D. Content-based recommendation in social tagging systems[C]//Proceedings of ACM 2010 ACM Conference on Recommender Systems. Barcelona, Spain:ACM, 2010:237-240. |
[67]
|
KOREN Y, BELL R, VOLINSKY C. Matrix factorization techniques for recommender systems[J]. IEEE Computer, 2009, 42(8):30-37. |
[68]
|
YANG Xi-wang, GUO Yang, LIU Yong, et al. A survey of collaborative filtering based social recommender systems[J]. Computer Communications, 2014, 41:1-10. |
[69]
|
CHEN Rui, HUA Qing-yi, CHANG Yan-shuo, et al. A survey of collaborative filtering-based recommender systems:From traditional methods to hybrid methods based on social networks[J]. IEEE Access, 2018, 6:64301-64320. |
[70]
|
XUE Hong-jian, DAI Xin-yu, ZHANG Jian-bing, et al. Deep matrix factorization models for recommender systems[C]//Proceedings of the twenty sixth International joint Conference on Artificial Intelligence. Melbourne, Australia:IJCAI, 2017:3203-3209. |
[71]
|
ZHOU Xiao, MASCOLO C, ZHAO Zhong-xiang. Topic-enhanced memory networks for personalised point-of-interest recommendation[C]//Procedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. Anchorage, USA:ACM, 2019:1-11. |
[72]
|
BOGERS T, KOOLEN M, MUSTO C, et al. Report on RECSYS 2016 workshop on new trends in content-based recommender systems[J]. SIGIR Forum, 2017, 51(1):45-51. |
[73]
|
ZHOU Fan, YIN Ruiyang, ZHANG Kun-peng, et al. Adversarial Point-of-Interest Recommendation[C]//Proceedings of the 2019 World Wide Web Conference. New York, USA:ACM, 2019:3462-3468. |
[74]
|
LIU Qi, MA Hai-ping, CHEN En-hong, et al. A survey of context-aware mobile recommendations[J]. IJITDM, 2013, 12(1):139-172. |
[75]
|
VALCARCE D, PARAPAR J, BARREIRO Á. Finding and analysing good neighbourhoods to improve collaborative filtering[J]. Knowledge-Based Systems, 2018, 159:193-202. |
[76]
|
GAN Ming-xin, MA Ying-xue, XIAO Ke-jun. CDMF:A deep learning model based on convolutional and dense-layer matrix factorization for context-aware recommendation[C]//Proceedings of the 52nd Hawaii International Conference on System Sciences. Hawaii, USA:HICSS, 2019:1126-1133. |
[77]
|
ZHANG Le-mei, LIU Peng, JON A G. A deep joint network for session-based news recommendations with contextual augmentation[C]//Proceedings of the 29th international conference on Hypertext and Social Media. Baltimore, USA:HT, 2018:201-209. |
[78]
|
BOBADILLA J, ORTEGA F, HERNANDO A, et al. Recommender systems survey[J]. Knowledge-Based Systems, 2013, 46:109-132. |
[79]
|
YAGER R R, Fuzzy logic methods in recommender systems[J]. Fuzzy Sets and Systems, 2003, 2:133-149. |
[80]
|
PARK H S, YOO J O, CHO S B. A context-aware music recommendation system using fuzzy bayesian networks with utility theory[C]//proceeding of International conference on Fuzzy Systems and Knowledge Discovery. Xi'an, China:Springer, 2006:970-979. |
[81]
|
LEE S, LEE S Y. Collaborative filtering based context information for real-time recommendation service in ubiquitous computing[J]. International Journal of Fuzzy Logic and Intelligent Systems, 2006, 6:110-115. |
[82]
|
KARACAPILIDIS N, HATZIELEFTHERIOU L. Exploiting similarity measures in multi-criteria based recommendations[C]//E-Commerce and Web Technologies, fourth International Conference. Prague, Czech Republic:EC-Web, 2003:424-434. |
[83]
|
YERA R, MARTÍNEZ L. Fuzzy tools in recommender systems:a survey[J]. International Journal of Computational Intelligence Systems, 2017, 10(1):776-803. |
[84]
|
LINDA S, MINZ S, BHARADWAJ K K. Fuzzy-genetic approach to context-aware recommender systems based on the hybridization of collaborative filtering and reclusive method techniques[J]. AI Communications, 2019, 32(1):125-141. |
[85]
|
SULTHANA A R, RAMASAMY S. Ontology and context based recommendation system using Neuro-Fuzzy Classification[J]. Computers and Electrical Engineering, 2019, 74:498-510. |
[86]
|
RAMIREZ-GARCIA X, GARCIA-VALDEZ M. A pre-filtering based context-aware recommender system using fuzzy rules[J]. Studies in Computational Intelligence, 2015:601:497-505. |
[87]
|
MYSZKOROWSKI K, ZAKRZEWSKA D. Fuzzy logic based modeling for building contextual student group recommendations[C]//Computational Collective Intelligence proceedings of seventh International Conference. Madrid, Spain:ICCCI, 2015:441-450. |
[88]
|
TARUS J K, NIU Z, KALUI D. A hybrid recommender system for e-learning based on context awareness and sequential pattern mining[J]. Soft Computing, 2018, 22(8):2449-2461. |
[89]
|
PARADARAMI T K, BASTIAN N D, WIGHTMAN J L. A hybrid recommender system using artificial neural networks[J]. Expert Systems with Applications, 2017, 83:300-313. |
[90]
|
DU Ying-peng, LIU Hong-zhi, WU Zhong-hai, et al. Hierarchical hybrid feature model for top-n context-aware recommendation[C]//IEEE International Conference on Data Mining. Singapore:IEEE, 2018:109-116. |
[91]
|
ZHENG Yong, MOBASHER B, BURKE R. CARSKit:A java-based context-aware recommendation engine[C]//IEEE International Conference on Data Mining Workshop. Atlantic City, USA:IEEE, 2015:1668-1671. |
[92]
|
YIN Hong-zhi, ZHOU Xiao-fang, CUI Bin, et al. Adapting to user interest drift for POI recommendation[J]. IEEE Transactions on Knowledge and Data Engineering, 2016, 28(10):2566-2581. |
[93]
|
YANG Li-bin, ZHENG Yu, CAI Xiao-yan, et al. A LSTM based model for personalized context-aware citation recommendation[J]. IEEE Access, 2018, 6:59618-59627. |
[94]
|
LI S, ABBASI-YADKORI Y, KVETON B, et al. Offline evaluation of ranking policies with click models[C]//Proceeding of the twenty fourth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. London, UK:ACM, 2018:1685-1694. |
[95]
|
CHRISTAKOPOULOU K. Towards recommendation systems with real-world constraints[D]. Minneapolis:University of Minnesota USA, 2018. |
[96]
|
BOBADILLA J, ORTEGA F, HERNANDO A, et al. Knowledge-based systems recommender systems survey[J]. Knowledge-Based Systems, 2013, 46:109-132. |
[97]
|
RODRÍGUEZ-HERNÁNDEZ M D C, ILARRI S, TRILLO R, et al. Context-aware recommendations using mobile P2P[C]//Proceeding of fifteenth International Conference on Advances in Mobile Computing and Multimedia. Salzburg, Austria:ACM, 2018:82-91. |
[98]
|
ILARRI S, TRILLO-LADO R, HERMOSO R. Datasets for context-aware recommender systems:Current context and possible directions[C]//IEEE International Conference on Data Engineering Workshops. Paris, France:IEEE, 2018:25-28. |
[99]
|
QUADRANA M, CREMONESI P, JANNACH D. Sequence-aware recommender systems[J]. ACM Computing Surveys, 2018, 51(4):1-36. |
[100]
|
PETTERSEN M, TVETE A K. A hybrid recommender system for context-aware recommendations of restaurants[D]. Trondheim Norway:Norwegian University of Science and Technology, 2016. |
[101]
|
ALIANNEJADI M, HARVEY M, COSTA L, et al. Understanding mobile search task relevance and user behaviour in context[C]//Proceedings of the Conference on Human Information Interaction. Scotland, UK:ACM, 2019:143-151. |
[102]
|
ALIANNEJADI M, RAFAILIDIS D, CRESTANI F. A collaborative ranking model with multiple location-based similarities for venue suggestion[C]//Proceeding of ACM SIGIR International Conference on Theory of Information Retrieval. Tianjin, China:ACM, 2018:19-26. |
[103]
|
ALIANNEJADI M, CRESTANI F. Personalized context-aware point of interest recommendation[J]. ACM Transactions on Information Systems, 2018, 36(4):1-28. |
[104]
|
BALTRUNAS L, KAMINSKAS M, LUDWIG B, et al. InCarMusic:Context-aware music recommendations in a car[C]//Proceedings of twelfth international conference e-commerce and Web Technologies. Toulouse, France:Springer, 2011:89-100. |
[105]
|
CAMPANA M G, DELMASTRO F. Recommender systems for online and mobile social networks:A survey[J]. Online Social Networks and Media, 2017, 3:75-97. |
[106]
|
KHAN M M, IBRAHIM R, GHANI I. Cross domain recommender systems:A systematic literature review[J]. ACM Computing Surveys, 2017, 50(3):1-34. |
[107]
|
ANANDHAN A, SHUIB N L M, Ismail M A, et al. Social media recommender systems:review and open research issues[J]. IEEE Access, 2018, 6:15608-15628. |
[108]
|
LIU Zhi-wei, YANG Yang, HUANG Zi, et al. Event early embedding:Predicting event volume dynamics at early stage[C]//Proceeding of Fortieth International Conference on Research and Development in Information Retrieval. Shinjuku, Japan:SIGIR, 2017:997-1000. |
[109]
|
SASSI I B, YAHIA S B, MELLOULI S. Fuzzy classification-based emotional context recognition from online social networks messages[C]//Proceeding of 2017 International Conference on Fuzzy Systems. Naples, Italy:IEEE, 2017:1-6. |
[110]
|
ALIANNEJADI M, MELE I, CRESTANI F. A cross-platform collection for contextual suggestion[C]//Proceeding of fortieth International Conference on Research and Development in Information Retrieval. Shinjuku, Japan:SIGIR, 2017:1269-1272. |
[111]
|
Aliannejadi M, Rafailidis D, Crestani F. A collaborative ranking model with multiple location-based similarities for venue suggestion[C]//Proceedings of the 2018 ACM-SIGIR International Conference on Theory of Information Retrieval. Tianjin, China:ACM, 2018:19-26. |
[112]
|
DU Ying-peng, LIU Hong-zhi, QU Yuan-hang, et al. Online personalized next-item recommendation via long short term preference learning[C]//Proceeding of fifteenth International Conference on Artificial Intelligence. Nanjing, China:PRICAI, 2018:915-927. |
[113]
|
OUHBI B, FRIKH B, ZEMMOURI E, et al. Deep learning based recommender systems[C]//Proceedings of fifth International Congress on Information Science and Technology. Marrakech, Morocco:IEEE, 2018:161-166. |
[114]
|
KHAN M M, IBRAHIM R, GHANI I. Cross domain recommender systems:Systematic literature review[J]. ACM Computing Surveys, 2017, 50(3):doi. org/10.1145/3073565. |