留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

上下文感知推荐系统:挑战和机遇

ALI Waqar 邵杰 KHAN Abdullah Aman TUMRANI Saifullah

ALI Waqar, 邵杰, KHAN Abdullah Aman, TUMRANI Saifullah. 上下文感知推荐系统:挑战和机遇[J]. 电子科技大学学报, 2019, 48(5): 655-673. doi: 10.3969/j.issn.1001-0548.2019.05.002
引用本文: ALI Waqar, 邵杰, KHAN Abdullah Aman, TUMRANI Saifullah. 上下文感知推荐系统:挑战和机遇[J]. 电子科技大学学报, 2019, 48(5): 655-673. doi: 10.3969/j.issn.1001-0548.2019.05.002
ALI Waqar, SHAO Jie, KHAN Abdullah Aman, TUMRANI Saifullah. Context-Aware Recommender Systems: Challenges and Opportunities[J]. Journal of University of Electronic Science and Technology of China, 2019, 48(5): 655-673. doi: 10.3969/j.issn.1001-0548.2019.05.002
Citation: ALI Waqar, SHAO Jie, KHAN Abdullah Aman, TUMRANI Saifullah. Context-Aware Recommender Systems: Challenges and Opportunities[J]. Journal of University of Electronic Science and Technology of China, 2019, 48(5): 655-673. doi: 10.3969/j.issn.1001-0548.2019.05.002

上下文感知推荐系统:挑战和机遇

doi: 10.3969/j.issn.1001-0548.2019.05.002
基金项目: 

国家自然科学基金(61672133)

详细信息
    作者简介:

    ALI Waqar (1980-),男,博士生,主要从事人工智能和数据挖掘方面的研究.

    通讯作者: 邵杰,E-mail:shaojie@uestc.edu.cn
  • 中图分类号: TP301.6

Context-Aware Recommender Systems: Challenges and Opportunities

Funds: 

Supported by the National Natural Science Foundation of China under Grant(61672133)

More Information
    Author Bio:

    ALI Waqar (1980-),男,博士生,主要从事人工智能和数据挖掘方面的研究.

  • 摘要: 该文梳理了社会和科学领域中上下文感知推荐系统的主要概念、技术、挑战和未来趋势;其次,分类介绍了可用于基于上下文的推荐的一系列技术和主要框架。除了经典的基于内容、基于协同过滤和基于矩阵分解的技术之外,调研了最近的研究方向,即基于深度学习和基于模糊逻辑的方法。最后,描述了在推荐过程中利用上下文信息的潜在研究机会。
  • [1] RAZA S, DING C. Progress in context-aware recommender systems-an overview[J]. Computer Science Review, 2019, 31:84-97.
    [2] SUNDERMANN C V, DOMINGUES M A, SINOARA R A, et al. Using opinion mining in context-aware recommender systems:A systematic review[J]. Information, 2019, 10(2):1-45.
    [3] XU Ming-hua, LIU Sheng-hao. Semantic-enhanced and context-aware hybrid collaborative filtering for event recommendation in event-based social networks[J]. IEEE Access, 2019, 7:17493-17502.
    [4] VILLEGAS N M, SÁNCHEZ C, DÍAZ-CELY J, et al. Characterizing context-aware recommender systems:a systematic literature review[J]. Knowledge-Based Systems, 2017, 140:173-200.
    [5] ZHANG Shu-ai, YAO Li-na, SUN Ai-xin, et al. Deep learning based recommender system:A survey and new perspectives[J]. ACM Computing Surveys, 2019, 52(1):1-38.
    [6] TAMINE L, DAOUD M. Evaluation in contextual information retrieval:foundations and recent advances within the challenges of context dynamicity and data privacy[J]. ACM Computing Surveys, 2018, 51(4):1-36.
    [7] WU Li-bing, QUAN Cong, LI Chen-liang, et al. A context-aware user-item representation learning for item recommendation[J]. ACM Transactions on Information Systems, 2019, 37(2):2201-2229.
    [8] ALIANNEJADI M, CRESTANI F. Personalized context-aware point of interest recommendation[J]. ACM Transactions on Information Systems, 2018, 36(4):1-28.
    [9] VERBERT K, MANOUSELIS K, OCHOA X, et al. Context-aware recommender systems for learning:A survey and future challenges[J]. IEEE Transactions on Learning Technologies, 2012, 5(4):318-335.
    [10] ABBAS A, ZHANG L, KHAN S U. A survey on context-aware recommender systems based on computational intelligence techniques[J]. Computing, 2015, 97(7):667-690.
    [11] VILLEGAS N M, MÜLLER H A. Managing dynamic context to optimize smart interactions and services in the smart internet[M]. Berlin:Springer, 2010.
    [12] ADOMAVICIUS G, SANKARANARAYANAN R, SEN S, et al. Incorporating contextual information in recommender systems using a multidimensional approach[J]. ACM Transactions on Information Systems, 2005, 23(1):103-145.
    [13] ODIĆ A, TKALČIČ M, TASIČ J F, et al. Predicting and detecting the relevant contextual information in a movie-recommender system[J]. Interacting with Computers, 2013, 25(1):74-90.
    [14] KARATZOGLOU A, AMATRIAIN X, OLIVER N. Multiverse recommendation:n-dimensional tensor factorization for context-aware collaborative filtering[C]//Proceedings of the fourth ACM conference on Recommender systems. Barcelona, Spain:ACM, 2010:79-86.
    [15] BALTRUNAS L, LUDWIG B, PEER S, et al. Context relevance assessment and exploitation in mobile recommender systems[J]. Personal and Ubiquitous Computing, 2012, 16(5):507-526.
    [16] TAO Mei, YANG Bo, HUA Xian-sheng, et al. Contextual video recommendation by multimodal relevance and user feedback[J]. ACM Transactions on Information Systems, 2011, 29(2):1-24.
    [17] CHEN Kai-long, CHEN Tian-qi, ZHENG Guo-qing, et al. Collaborative personalized tweet recommendation[C]//Proceedings of the 35th International ACM SIGIR Conference on Research and Development in Information Retrieval. Portland, USA:ACM, 2012:661-670.
    [18] LI Li-hong, CHU Wei, LANGFORD J, et al. A contextual-bandit approach to personalized news article recommendation[C]//Proceedings of the 19th international conference on World Wide Web. North Carolina, USA:ACM, 2010:661-670.
    [19] CAI Rui, ZHANG Chao, WANG Chong, et al. Musicsense:Contextual music recommendation using emotional allocation modeling[C]//Proceedings of the 15th ACM international conference on Multimedia. Augsburg, Germany:ACM, 2007:553-556.
    [20] HAN Jia-wen, GEORGE C, ZHENG Ding-ding, et al. Sentiment pen:Recognizing emotional context based on handwriting features[C]//Proceedings of the 10th Augmented Human International Conference 2019. Reims, France:ACM, 2019:241-248.
    [21] PARENT J, KIM Y. Towards socially intelligent HRI systems:Quantifying emotional, social, and relational context in real-world human interactions[C]//2017 AAAI Fall Symposium Series. Virginia, USA:AAAI, 2017:104-108.
    [22] SASSI I B, YAHIA S B, MELLOULI S. Fuzzy classification-based emotional context recognition from online social networks messages[C]//Proceedings of IEEE International Conference on Fuzzy Systems. Naples, Italy:IEEE, 2017:1-6.
    [23] GONZÁLEZ G, JOSEP L D L R, MONTANER M, et al. Embedding emotional context in recommender systems[C]//Proceedings of International Conference on Data Engineering. Istanbul, Turkey:IEEE, 2007:845-852.
    [24] DU Rong, YU Zhi-wen, TAO Mei, et al. Predicting activity attendance in event-based social networks:Content, context and social influence[C]//Proceedings of the 2014 ACM international joint conference on pervasive and ubiquitous computing. Washington, USA:ACM, 2014:425-434.
    [25] HSIEH W T, KU T, WU Chen-ming, et al. Social event radar:A bilingual context mining and sentiment analysis summarization system[C]//Proceedings of the ACL 2012 System Demonstrations. Jeju, Korea:ACL, 2012:163-168.
    [26] QIAO Zhi, ZHANG Peng, ZHOU Chuan, et al. Event recommendation in event-based social networks[C]//Proceedings of twenty-eighth AAAI Conference on Artificial Intelligence. Québec, Canada:AAAI, 2012:3130-3131.
    [27] MACEDO A Q, MARINHO L B, SANTOS R L T. Context-Aware Event Recommendation in Event-based Social Networks[C]//Proceedings of the 9th ACM Conference on Recommender Systems. Vienna, Austria:ACM, 2015:123-130.
    [28] CHEN C C, SUN Yu-chun. Exploring acquaintances of social network site users for effective social event recommendations[J]. Information Processing Letters, 2016, 116(3):227-236.
    [29] ZHANG Wei, WANG Jian-yong, WEI Feng. Combining latent factor model with location features for event-based group recommendation[C]//Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining. Chicago, USA:ACM, 2013:910-918.
    [30] BOFFA S, MAIO D, GERLA B, et al. Context-aware advertisement recommendation on twitter through rough sets[C]//2018 IEEE International Conference on Fuzzy Systems. Rio de Janeiro, Brazil:IEEE, 2018:1-8.
    [31] HARUNA K, AKMAR M I, SUHENDROYONO S, et al. Context-aware recommender system:A review of recent developmental process and future research direction[J]. Applied Sciences, 2017, 7(12):1211.
    [32] SARKER I H. Research issues in mining user behavioral rules for context-aware intelligent mobile applications[J]. Iran Journal of Computer Science, 2018, 2(1):41-51.
    [33] WANG Xiao-liang, WANG Wei, JIN Zhan-peng. Context-aware reinforcement learning-based mobile cloud computing for telemonitoring[C]//Proceedings of 2018 IEEE EMBS International Conference on Biomedical and Health Informatics. Nevada, USA:IEEE, 2018:426-429.
    [34] LAß C, HERZOG D, WÖRNDL W. Context-aware tourist trip recommendations[C]//WOPS'02:Proceedings of the 2nd Workshop on Recommenders in Tourism co-located with 11th ACM Conference on Recommender Systems (RecSys 2017). Como, Italy:ACM, 2017:18-25.
    [35] LAMBUSCH F, FELLMANN M. Towards context-aware assistance for smart self-management of knowledge workers[C]//WOPS'02:CEUR Workshop Proceedings co-located in 17th International Conference Perspectives in Business Informatics Research. Stockholm, Sweden:Springer, 2018:1-12.
    [36] AWAN R, KOOHBANANI N A, SHABAN M, et al. Context-aware learning using transferable features for classification of breast cancer histology images[C]//Proceedings of International Conference on Image Analysis and Recognition. Varzim, Portugal:Springer, 2018:788-795.
    [37] GUO Yang-yang, CHENG Zhi-yong, NIE Li-qiang, et al. Attentive long short-term preference modeling for personalized product search[J]. ACM Transactions on Information Systems, 2019, 37(2):1-19.
    [38] VIKTORATOS I, TSADIRAS A, BASSILIADES N. Combining community-based knowledge with association rule mining to alleviate the cold start problem in context-aware recommender systems[J]. Expert systems with applications, 2018, 101:78-90.
    [39] ZHU Qi-liang, WANG Shang-guang, CHENG Bo, et al. Context-aware group recommendation for point-of-interests[J]. IEEE Access, 2018, 6:12129-12144.
    [40] LIU Zheng, XIE Xing, CHEN Lei. Context-aware Academic Collaborator Recommendation[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. London, United Kingdom:ACM, 2018:1870-1879.
    [41] BEUTEL A, COVINGTON P, JAIN S, et al. Latent cross:making use of context in recurrent recommender systems[C]//Proceeding of eleventh International Conference on Web Search and Data Mining. Marina Del Rey, USA:ACM, 2018:46-54.
    [42] HE Qi, PEI Jian, DANIEL K, et al. Context-aware citation recommendation[C]//Proceedings of 2010 international conference on World Wide Web. North Carolina, USA:ACM, 2010:421-430.
    [43] PHUONG T M, LIEN D T, PHUONG N D. Graph-based context-aware collaborative filtering[J]. Expert Systems with Applications, 2019, 126:9-19.
    [44] XU Ming-hua, LIU Sheng-hao. Semantic-enhanced and context-aware hybrid collaborative filtering for event recommendation in event-based social networks[J]. IEEE Access, 2019, 7:17493-17502.
    [45] HERLOCKER J L, KONSTAN J A. Content-independent task-focused recommendation[J]. IEEE Internet Computing, 2001, 5(6):40-47.
    [46] ADOMAVICIUS G, TUZHILIN A. Toward the next generation of recommender systems:A survey of the state-of-the-art and possible extensions[J]. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(6):734-749.
    [47] PEI Chang-hua, ZHANG Yi, ZHANG Yong-feng, et al. Personalized context-aware re-ranking for e-commerce recommender systems[EB/OL].[2019-07-23]. https://arxiv.org/abs/1904.06813.
    [48] YANG Jing-xuan, XU Jun, TONG Jian-zhuo, et al. Pre-training of context-aware item representation for next basket recommendation[EB/OL].[2019-04-14]. https://arxiv.org/abs/1904.12604
    [49] VILLEGAS NM, SÁNCHEZ C, DÍAZ-CELY J, et al. Characterizing context-aware recommender systems:A systematic literature review[J]. Knowledge-Based Systems, 2018, 140:173-200.
    [50] BALTRUNAS L, LUDWIG B, RICCI F. Matrix factorization techniques for context aware recommendation[C]//Proceeding of 2011 conference on recommender systems. Chicago, USA:ACM, 2011:301-304.
    [51] TANG Ji-liang, GAO Hui-ji, HU Xia, et al. Context-aware review helpfulness rating prediction[C]//Proceeding of seventh International Conference on Recommender Systems. HongKong, China:ACM, 2013:1-8.
    [52] JIANG Meng, CUI Peng, WANG Fei, et al. Scalable recommendation with social contextual information[J]. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(11):2789-2802.
    [53] REN Xing-yi, SONG Mei-na, E Hai-hong, et al. Context-aware probabilistic matrix factorization modeling for point-of-interest recommendation[J]. Neurocomputing, 2017, 241:38-55.
    [54] SI Ya-li, ZHANG Fu-zhi, LIU Wen-yuan. An adaptive point-of-interest recommendation method for location-based social networks based on user activity and spatial features[J]. Knowledge-Based Systems, 2019, 163:267-282.
    [55] UNGER M, BAR A, SHAPIRA B, et al. Towards latent context-aware recommendation systems[J]. Knowledge-Based Systems, 2016, 104:165-178.
    [56] ZHENG Yong, MOBASHER B, BURKE R. et al. CSLIM:Contextual SLIM recommendation algorithms[C]//Proceedings of the eighth ACM Conference on Recommender Systems. California:ACM, 2014:301-304.
    [57] LI Xiang, WANG Zhi-jian, WANG Liu-yang, el al. A multi-dimensional context-aware recommendation approach based on improved random forest algorithm[J]. IEEE Access, 2018, 6:45071-45085.
    [58] HU Bin-bin, SHI Chuan, ZHAO W X, et al. Leveraging meta-path based context for top-N recommendation with a neural co-attention model[C]//Proceedings of the twenty fourth International Conference on Knowledge Discovery and Data Mining. London, UK:ACM, 2018:1531-1540.
    [59] ZOLAKTAF Z, BABANEZHAD R, POTTINGER R. A generic top-N recommendation framework for Trading-off Accuracy, Novelty, and Coverage[C]//Proceedings of the thirty fourth International Conference on Data Engineering. Paris, France:ICDE, 2018:149-160.
    [60] GU Yu-long, SONG Jia-xing, LIU Wei-dong, et al. Context aware matrix factorization for event recommendation in event-based social networks[C]//Proceeding of 2016 International Conference on Web Intelligence. Ohama, USA:IEEE, 2016:248-255.
    [61] TONG Man, SHEN Hua-wei, HUANG Jun-ming, et al. Context-adaptive matrix factorization for multi-context Recommendation[C]//Proceedings of the twenty fourth ACM International Conference on Information and Knowledge Management. Melbourne, Australia:ACM, 2015:901-910.
    [62] GU Yu-long, SONG Jia-xing, LIU Wei-dong, et al. CAMF:Context aware matrix factorization for social recommendation[J]. Web Intelligence, 2018, 16(1):53-71.
    [63] GOODFELLOW I, BENGIO Y, COURVILLE A. Deep learning[M]. New York:MIT press, 2016.
    [64] WU Chao-yuan, AHMED A, BEUTEL A, et al. Recurrent Recommender Networks[C]//Proceedings of the tenth International ACM Conference on Web Search and Data Mining. Cambridge, United Kingdom:WSDM, 2017:495-503.
    [65] TANG Jia-xi, WANG Ke. Personalized top-N sequential recommendation via convolutional sequence embedding[C]//Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining.[S.l.]:ACM, 2018:565-573.
    [66] CANTADOR I, BELLOGÍN A, VALLET D. Content-based recommendation in social tagging systems[C]//Proceedings of ACM 2010 ACM Conference on Recommender Systems. Barcelona, Spain:ACM, 2010:237-240.
    [67] KOREN Y, BELL R, VOLINSKY C. Matrix factorization techniques for recommender systems[J]. IEEE Computer, 2009, 42(8):30-37.
    [68] YANG Xi-wang, GUO Yang, LIU Yong, et al. A survey of collaborative filtering based social recommender systems[J]. Computer Communications, 2014, 41:1-10.
    [69] CHEN Rui, HUA Qing-yi, CHANG Yan-shuo, et al. A survey of collaborative filtering-based recommender systems:From traditional methods to hybrid methods based on social networks[J]. IEEE Access, 2018, 6:64301-64320.
    [70] XUE Hong-jian, DAI Xin-yu, ZHANG Jian-bing, et al. Deep matrix factorization models for recommender systems[C]//Proceedings of the twenty sixth International joint Conference on Artificial Intelligence. Melbourne, Australia:IJCAI, 2017:3203-3209.
    [71] ZHOU Xiao, MASCOLO C, ZHAO Zhong-xiang. Topic-enhanced memory networks for personalised point-of-interest recommendation[C]//Procedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. Anchorage, USA:ACM, 2019:1-11.
    [72] BOGERS T, KOOLEN M, MUSTO C, et al. Report on RECSYS 2016 workshop on new trends in content-based recommender systems[J]. SIGIR Forum, 2017, 51(1):45-51.
    [73] ZHOU Fan, YIN Ruiyang, ZHANG Kun-peng, et al. Adversarial Point-of-Interest Recommendation[C]//Proceedings of the 2019 World Wide Web Conference. New York, USA:ACM, 2019:3462-3468.
    [74] LIU Qi, MA Hai-ping, CHEN En-hong, et al. A survey of context-aware mobile recommendations[J]. IJITDM, 2013, 12(1):139-172.
    [75] VALCARCE D, PARAPAR J, BARREIRO Á. Finding and analysing good neighbourhoods to improve collaborative filtering[J]. Knowledge-Based Systems, 2018, 159:193-202.
    [76] GAN Ming-xin, MA Ying-xue, XIAO Ke-jun. CDMF:A deep learning model based on convolutional and dense-layer matrix factorization for context-aware recommendation[C]//Proceedings of the 52nd Hawaii International Conference on System Sciences. Hawaii, USA:HICSS, 2019:1126-1133.
    [77] ZHANG Le-mei, LIU Peng, JON A G. A deep joint network for session-based news recommendations with contextual augmentation[C]//Proceedings of the 29th international conference on Hypertext and Social Media. Baltimore, USA:HT, 2018:201-209.
    [78] BOBADILLA J, ORTEGA F, HERNANDO A, et al. Recommender systems survey[J]. Knowledge-Based Systems, 2013, 46:109-132.
    [79] YAGER R R, Fuzzy logic methods in recommender systems[J]. Fuzzy Sets and Systems, 2003, 2:133-149.
    [80] PARK H S, YOO J O, CHO S B. A context-aware music recommendation system using fuzzy bayesian networks with utility theory[C]//proceeding of International conference on Fuzzy Systems and Knowledge Discovery. Xi'an, China:Springer, 2006:970-979.
    [81] LEE S, LEE S Y. Collaborative filtering based context information for real-time recommendation service in ubiquitous computing[J]. International Journal of Fuzzy Logic and Intelligent Systems, 2006, 6:110-115.
    [82] KARACAPILIDIS N, HATZIELEFTHERIOU L. Exploiting similarity measures in multi-criteria based recommendations[C]//E-Commerce and Web Technologies, fourth International Conference. Prague, Czech Republic:EC-Web, 2003:424-434.
    [83] YERA R, MARTÍNEZ L. Fuzzy tools in recommender systems:a survey[J]. International Journal of Computational Intelligence Systems, 2017, 10(1):776-803.
    [84] LINDA S, MINZ S, BHARADWAJ K K. Fuzzy-genetic approach to context-aware recommender systems based on the hybridization of collaborative filtering and reclusive method techniques[J]. AI Communications, 2019, 32(1):125-141.
    [85] SULTHANA A R, RAMASAMY S. Ontology and context based recommendation system using Neuro-Fuzzy Classification[J]. Computers and Electrical Engineering, 2019, 74:498-510.
    [86] RAMIREZ-GARCIA X, GARCIA-VALDEZ M. A pre-filtering based context-aware recommender system using fuzzy rules[J]. Studies in Computational Intelligence, 2015:601:497-505.
    [87] MYSZKOROWSKI K, ZAKRZEWSKA D. Fuzzy logic based modeling for building contextual student group recommendations[C]//Computational Collective Intelligence proceedings of seventh International Conference. Madrid, Spain:ICCCI, 2015:441-450.
    [88] TARUS J K, NIU Z, KALUI D. A hybrid recommender system for e-learning based on context awareness and sequential pattern mining[J]. Soft Computing, 2018, 22(8):2449-2461.
    [89] PARADARAMI T K, BASTIAN N D, WIGHTMAN J L. A hybrid recommender system using artificial neural networks[J]. Expert Systems with Applications, 2017, 83:300-313.
    [90] DU Ying-peng, LIU Hong-zhi, WU Zhong-hai, et al. Hierarchical hybrid feature model for top-n context-aware recommendation[C]//IEEE International Conference on Data Mining. Singapore:IEEE, 2018:109-116.
    [91] ZHENG Yong, MOBASHER B, BURKE R. CARSKit:A java-based context-aware recommendation engine[C]//IEEE International Conference on Data Mining Workshop. Atlantic City, USA:IEEE, 2015:1668-1671.
    [92] YIN Hong-zhi, ZHOU Xiao-fang, CUI Bin, et al. Adapting to user interest drift for POI recommendation[J]. IEEE Transactions on Knowledge and Data Engineering, 2016, 28(10):2566-2581.
    [93] YANG Li-bin, ZHENG Yu, CAI Xiao-yan, et al. A LSTM based model for personalized context-aware citation recommendation[J]. IEEE Access, 2018, 6:59618-59627.
    [94] LI S, ABBASI-YADKORI Y, KVETON B, et al. Offline evaluation of ranking policies with click models[C]//Proceeding of the twenty fourth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. London, UK:ACM, 2018:1685-1694.
    [95] CHRISTAKOPOULOU K. Towards recommendation systems with real-world constraints[D]. Minneapolis:University of Minnesota USA, 2018.
    [96] BOBADILLA J, ORTEGA F, HERNANDO A, et al. Knowledge-based systems recommender systems survey[J]. Knowledge-Based Systems, 2013, 46:109-132.
    [97] RODRÍGUEZ-HERNÁNDEZ M D C, ILARRI S, TRILLO R, et al. Context-aware recommendations using mobile P2P[C]//Proceeding of fifteenth International Conference on Advances in Mobile Computing and Multimedia. Salzburg, Austria:ACM, 2018:82-91.
    [98] ILARRI S, TRILLO-LADO R, HERMOSO R. Datasets for context-aware recommender systems:Current context and possible directions[C]//IEEE International Conference on Data Engineering Workshops. Paris, France:IEEE, 2018:25-28.
    [99] QUADRANA M, CREMONESI P, JANNACH D. Sequence-aware recommender systems[J]. ACM Computing Surveys, 2018, 51(4):1-36.
    [100] PETTERSEN M, TVETE A K. A hybrid recommender system for context-aware recommendations of restaurants[D]. Trondheim Norway:Norwegian University of Science and Technology, 2016.
    [101] ALIANNEJADI M, HARVEY M, COSTA L, et al. Understanding mobile search task relevance and user behaviour in context[C]//Proceedings of the Conference on Human Information Interaction. Scotland, UK:ACM, 2019:143-151.
    [102] ALIANNEJADI M, RAFAILIDIS D, CRESTANI F. A collaborative ranking model with multiple location-based similarities for venue suggestion[C]//Proceeding of ACM SIGIR International Conference on Theory of Information Retrieval. Tianjin, China:ACM, 2018:19-26.
    [103] ALIANNEJADI M, CRESTANI F. Personalized context-aware point of interest recommendation[J]. ACM Transactions on Information Systems, 2018, 36(4):1-28.
    [104] BALTRUNAS L, KAMINSKAS M, LUDWIG B, et al. InCarMusic:Context-aware music recommendations in a car[C]//Proceedings of twelfth international conference e-commerce and Web Technologies. Toulouse, France:Springer, 2011:89-100.
    [105] CAMPANA M G, DELMASTRO F. Recommender systems for online and mobile social networks:A survey[J]. Online Social Networks and Media, 2017, 3:75-97.
    [106] KHAN M M, IBRAHIM R, GHANI I. Cross domain recommender systems:A systematic literature review[J]. ACM Computing Surveys, 2017, 50(3):1-34.
    [107] ANANDHAN A, SHUIB N L M, Ismail M A, et al. Social media recommender systems:review and open research issues[J]. IEEE Access, 2018, 6:15608-15628.
    [108] LIU Zhi-wei, YANG Yang, HUANG Zi, et al. Event early embedding:Predicting event volume dynamics at early stage[C]//Proceeding of Fortieth International Conference on Research and Development in Information Retrieval. Shinjuku, Japan:SIGIR, 2017:997-1000.
    [109] SASSI I B, YAHIA S B, MELLOULI S. Fuzzy classification-based emotional context recognition from online social networks messages[C]//Proceeding of 2017 International Conference on Fuzzy Systems. Naples, Italy:IEEE, 2017:1-6.
    [110] ALIANNEJADI M, MELE I, CRESTANI F. A cross-platform collection for contextual suggestion[C]//Proceeding of fortieth International Conference on Research and Development in Information Retrieval. Shinjuku, Japan:SIGIR, 2017:1269-1272.
    [111] Aliannejadi M, Rafailidis D, Crestani F. A collaborative ranking model with multiple location-based similarities for venue suggestion[C]//Proceedings of the 2018 ACM-SIGIR International Conference on Theory of Information Retrieval. Tianjin, China:ACM, 2018:19-26.
    [112] DU Ying-peng, LIU Hong-zhi, QU Yuan-hang, et al. Online personalized next-item recommendation via long short term preference learning[C]//Proceeding of fifteenth International Conference on Artificial Intelligence. Nanjing, China:PRICAI, 2018:915-927.
    [113] OUHBI B, FRIKH B, ZEMMOURI E, et al. Deep learning based recommender systems[C]//Proceedings of fifth International Congress on Information Science and Technology. Marrakech, Morocco:IEEE, 2018:161-166.
    [114] KHAN M M, IBRAHIM R, GHANI I. Cross domain recommender systems:Systematic literature review[J]. ACM Computing Surveys, 2017, 50(3):doi. org/10.1145/3073565.
  • [1] 王永, 王淞立, 邓江洲.  基于生成对抗网络的评分可信推荐模型 . 电子科技大学学报, 2024, 53(3): 396-403. doi: 10.12178/1001-0548.2023116
    [2] 张天文, 张晓玲, 邵子康, 曾天娇.  全等级上下文压缩激励的SAR舰船实例分割 . 电子科技大学学报, 2023, 52(3): 357-365. doi: 10.12178/1001-0548.2022415
    [3] 蒋伟, 秦志光.  耦合社会信任信息的矩阵分解协同过滤模型 . 电子科技大学学报, 2019, 48(3): 420-426. doi: 10.3969/j.issn.1001-0548.2019.03.018
    [4] 陈玲姣, 蔡世民, 张千明, 周涛, 张翼成.  基于信任关系的资源分配推荐算法改进研究 . 电子科技大学学报, 2019, 48(3): 449-455. doi: 10.3969/j.issn.1001-0548.2019.03.022
    [5] 杨越, 黄瑞章, 魏琴, 陈艳平, 秦永彬.  基于上下文语义的新闻人名纠错方法 . 电子科技大学学报, 2019, 48(6): 809-814. doi: 10.3969/j.issn.1001-0548.2019.06.002
    [6] 张海霞, 吕振, 张传亭, 袁东风.  一种引入加权异构信息的改进协同过滤推荐算法 . 电子科技大学学报, 2018, 47(1): 112-116, 152. doi: 10.3969/j.issn.1001-0548.2018.01.017
    [7] 丁哲, 秦臻, 郑文韬, 秦志光.  基于移动用户浏览行为的推荐模型 . 电子科技大学学报, 2017, 46(6): 907-912. doi: 10.3969/j.issn.1001-0548.2017.06.020
    [8] 夏虎, 黄文茜.  基于上下文相关的未知实体词识别方法 . 电子科技大学学报, 2016, 45(5): 839-844. doi: 10.3969/j.issn.1001-0548.2016.05.022
    [9] 徐雅斌, 石伟杰.  微博用户推荐模型的研究 . 电子科技大学学报, 2015, 44(2): 254-259. doi: 10.3969/j.issn.1001-0548.2015.02.016
    [10] 左旭舟, 夏玮玮, 沈连丰.  基于认知无线电的LTE系统频谱感知方法 . 电子科技大学学报, 2014, 43(5): 663-668. doi: 10.3969/j.issn.1001-0548.2014.05.005
    [11] 刘贵松, 解修蕊, 黄海波, 屈鸿.  基于最短路径信任关系的推荐项目计算方法 . 电子科技大学学报, 2014, 43(2): 162-166. doi: 10.3969/j.issn.1001-0548.2014.02.001
    [12] 王妮娜, 桂冠, 苏泳涛, 石晶林, 张平.  基于压缩感知的MIMO-OFDM系统稀疏信道估计方法 . 电子科技大学学报, 2013, 42(1): 58-62. doi: 10.3969/j.issn.1001-0548.2013.01.014
    [13] 许炜阳, 徐婷.  认知无线电系统中存在载波频偏的OFDM频谱感知技术 . 电子科技大学学报, 2013, 42(3): 355-359. doi: 10.3969/j.issn.1001-0548.2013.03.007
    [14] 张亮, 柏林森, 周涛.  基于跨电商行为的交叉推荐算法 . 电子科技大学学报, 2013, 42(1): 154-160. doi: 10.3969/j.issn.1001-0548.2013.01.031
    [15] 冯春, 吴洪涛, 乔兵, 张家驹.  基于改进形状上下文的双焦图像深度估计 . 电子科技大学学报, 2013, 42(2): 266-271. doi: 10.3969/j.issn.1001-0548.2013.02.017
    [16] 黄琼, 刘熙, 阳小龙, 隆克平.  T-Vivaldi:TIV感知的IP网络坐标系统 . 电子科技大学学报, 2012, 41(1): 147-151. doi: 10.3969/j.issn.1001-0548.2012.01.028
    [17] 朱郁筱, 吕琳媛.  推荐系统评价指标综述 . 电子科技大学学报, 2012, 41(2): 163-175. doi: 10.3969/j.issn.1001-0548.2012.02.001
    [18] 谢永强, 陈建军, 朱增青.  不确定系统响应上下界分析的改进仿射算法 . 电子科技大学学报, 2011, 40(4): 634-640. doi: 10.3969/j.issn.1001-0548.2011.03.033
    [19] 张靖, 何发镁, 邱云.  个性化推荐系统描述文件攻击检测方法 . 电子科技大学学报, 2011, 40(2): 250-254. doi: 10.3969/j.issn.1001-0548.2011.02.019
    [20] 张选芳.  形式语言中的上下文无关和上下文相关 . 电子科技大学学报, 1997, 26(4): 435-439.
  • 加载中
计量
  • 文章访问数:  5597
  • HTML全文浏览量:  272
  • PDF下载量:  258
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-01
  • 修回日期:  2019-09-05
  • 刊出日期:  2019-09-15

上下文感知推荐系统:挑战和机遇

doi: 10.3969/j.issn.1001-0548.2019.05.002
    基金项目:

    国家自然科学基金(61672133)

    作者简介:

    ALI Waqar (1980-),男,博士生,主要从事人工智能和数据挖掘方面的研究.

    通讯作者: 邵杰,E-mail:shaojie@uestc.edu.cn
  • 中图分类号: TP301.6

摘要: 该文梳理了社会和科学领域中上下文感知推荐系统的主要概念、技术、挑战和未来趋势;其次,分类介绍了可用于基于上下文的推荐的一系列技术和主要框架。除了经典的基于内容、基于协同过滤和基于矩阵分解的技术之外,调研了最近的研究方向,即基于深度学习和基于模糊逻辑的方法。最后,描述了在推荐过程中利用上下文信息的潜在研究机会。

English Abstract

ALI Waqar, 邵杰, KHAN Abdullah Aman, TUMRANI Saifullah. 上下文感知推荐系统:挑战和机遇[J]. 电子科技大学学报, 2019, 48(5): 655-673. doi: 10.3969/j.issn.1001-0548.2019.05.002
引用本文: ALI Waqar, 邵杰, KHAN Abdullah Aman, TUMRANI Saifullah. 上下文感知推荐系统:挑战和机遇[J]. 电子科技大学学报, 2019, 48(5): 655-673. doi: 10.3969/j.issn.1001-0548.2019.05.002
ALI Waqar, SHAO Jie, KHAN Abdullah Aman, TUMRANI Saifullah. Context-Aware Recommender Systems: Challenges and Opportunities[J]. Journal of University of Electronic Science and Technology of China, 2019, 48(5): 655-673. doi: 10.3969/j.issn.1001-0548.2019.05.002
Citation: ALI Waqar, SHAO Jie, KHAN Abdullah Aman, TUMRANI Saifullah. Context-Aware Recommender Systems: Challenges and Opportunities[J]. Journal of University of Electronic Science and Technology of China, 2019, 48(5): 655-673. doi: 10.3969/j.issn.1001-0548.2019.05.002
参考文献 (114)

目录

    /

    返回文章
    返回