基于社区时空主题模型的微博社区发现方法

段炼, 朱欣焰

段炼, 朱欣焰. 基于社区时空主题模型的微博社区发现方法[J]. 电子科技大学学报, 2014, 43(3): 464-469. DOI: 10.3969/j.issn.1001-0548.2014.03.025
引用本文: 段炼, 朱欣焰. 基于社区时空主题模型的微博社区发现方法[J]. 电子科技大学学报, 2014, 43(3): 464-469. DOI: 10.3969/j.issn.1001-0548.2014.03.025
DUAN Lian, ZHU Xin-yan. Microblog Community Detection Method based on Community Spatio-Temporal Topic Model[J]. Journal of University of Electronic Science and Technology of China, 2014, 43(3): 464-469. DOI: 10.3969/j.issn.1001-0548.2014.03.025
Citation: DUAN Lian, ZHU Xin-yan. Microblog Community Detection Method based on Community Spatio-Temporal Topic Model[J]. Journal of University of Electronic Science and Technology of China, 2014, 43(3): 464-469. DOI: 10.3969/j.issn.1001-0548.2014.03.025

基于社区时空主题模型的微博社区发现方法

基金项目: 

国家863计划(2013AA12A203); 国家自然科学基金(41361022)

详细信息
    作者简介:

    段炼(1981-),男,博士生,主要从事时空数据挖掘方面的研究.

  • 中图分类号: P208

Microblog Community Detection Method based on Community Spatio-Temporal Topic Model

  • 摘要: 提出了一种基于主题模型的微博社区发现方法. 该方法采用狄利克雷过程(Dirichlet process)自适应生成多个潜在地理区域; 利用多项式分布描述主题在连续时间中的强度; 将用户对潜在地理区域和社区的选择偏好引入主题模型; 最后通过EM方法和Gibbs采样,实现时空主题模型参数估算,以基于主题相似性进行社区发现. 实验表明,该方法能更加准确地识别微博社区.
    Abstract: This paper presents a novel micro-community detection method based on topic model. Multiple latent geographical regions by Dirichlet process are created adaptively. A multinomial distribution is then employed to depict topics evolutions within each time bin. User selection preferences of latent geographical region and community are introduced in topic model. Finally, the EM method and Gibbs sampling method are used to estimate spatio-temporal topic model parameters so that community detection can be realized by topics similarity. Experiment results show that this method can promote the performances of community identifying.
计量
  • 文章访问数:  4428
  • HTML全文浏览量:  106
  • PDF下载量:  96
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-10-28
  • 修回日期:  2014-03-17
  • 刊出日期:  2014-06-14

目录

    /

    返回文章
    返回