电信数据中用户行为特征测量与分析

宋竹, 秦志光, 罗嘉庆, 张悦涵

宋竹, 秦志光, 罗嘉庆, 张悦涵. 电信数据中用户行为特征测量与分析[J]. 电子科技大学学报, 2015, 44(6): 934-939. DOI: 10.3969/j.issn.1001-0548.2015.06.024
引用本文: 宋竹, 秦志光, 罗嘉庆, 张悦涵. 电信数据中用户行为特征测量与分析[J]. 电子科技大学学报, 2015, 44(6): 934-939. DOI: 10.3969/j.issn.1001-0548.2015.06.024
SONG Zhu, QIN Zhi-guang, LUO Jia-qing, ZHANG Yue-han. Measurement and Analysis of User Behaviors in Mobile Data[J]. Journal of University of Electronic Science and Technology of China, 2015, 44(6): 934-939. DOI: 10.3969/j.issn.1001-0548.2015.06.024
Citation: SONG Zhu, QIN Zhi-guang, LUO Jia-qing, ZHANG Yue-han. Measurement and Analysis of User Behaviors in Mobile Data[J]. Journal of University of Electronic Science and Technology of China, 2015, 44(6): 934-939. DOI: 10.3969/j.issn.1001-0548.2015.06.024

电信数据中用户行为特征测量与分析

详细信息
  • 中图分类号: TP399

Measurement and Analysis of User Behaviors in Mobile Data

  • 摘要: 通话和上网是电信运营商的重要业务,研究通话和上网的行为规律有助于提升电信运营商的业务规划和管理水平。现有的研究工作通常只关注于手机通话或上网行为,很少同时对两类行为进行关联的分析。该文提取了电信数据中手机通话与上网的基本特征,对通话和上网行为的频率分布进行了曲线拟合。通过比较两类行为的拟合参数与相关系数,发现了工作日与周末、以及周六与周日显著不同的用户行为特征。通过对通话和上网时间的归一化,定义了用户的使用偏好,发现54%的手机用户更多的倾向于使用手机通话,而31%的用户则倾向于使用手机上网。
  • [1]

    CANDIA J, GONZALAZ M C, WANG P, et al. Uncovering individual and collective human dynamics from mobile phone records[J]. Journal of Physics A: Mathematical and Theoretical, 2008, 41(22): 1-15.

    [2]

    JO H H, KARSAI M, KERTESZ K, et al. Circadian pattern and burstiness in mobile phone communication[J]. New Journal of Physics, 2012, 14(1): 20-37.

    [3]

    ONNELA J P, SARAMAKI J, HYVONEN J, et al. Analysis of a large-scale weighted network of one-to-one human communication[J]. New Journal of Physics, 2007, 9(6): 179-201.

    [4]

    MOTAHARI S, ZANG H, REUTHER P. The impact of temporal factors on mobility patterns[C]//45th International Conference on System Science(HICSS). Hawaii: IEEE, 2012.

    [5]

    OLMEDILLA D, FRIAS-MARTINEZ E, LARA R. Mobile web profiling: a study of off-portal surfing habits of mobile users[C]//Proceedings of the 18th International Conference on UMAP. Big Island, USA: Springer Berlin Heidelberg, 2010: 339-350.

    [7]

    TAYLOR C A, ANICELLO O, SOMOHANO S, et al. A framework for understanding mobile internet motivations and behaviors[M]. New York: ACM, 2008.

    [8]

    GHOSE A, HAN S P. An empirical analysis of user content generation and usage behavior on the mobile internet[J]. Management Science, 2011, 57(9): 1671-1691.

    [9]

    HSU S L, DOONG H S, WANG H. Exploring diffusion patterns of 3G wireless Internet service adoption[C]//2nd International Conference on Computer Engineering and Technology(ICCET). Assisi-Perugia: IEEE, 2010.

    [10]

    WANG C. Surfing mobile internet motivated by fashion attentiveness: an empirical study of mobile internet use in China[C]//8th Asia-Pacific Regional ITS Conference. Taipei, China: [s.n.]: 2011.

    [11]

    PURCELL K, SMITH A, ZICKUHR K. Social media & mobile internet use among teens and young adults[M]. Washington, USA: Pew Internet & American Life Project, 2010.

    [12]

    ISHII K. Internet use via mobile phone in Japan[J]. Telecommunications Policy, 2004, 28(1): 43-58.

    [13]

    HALVEY M, KEANE M T, SMYTH B. Predicting navigation patterns on the mobile-internet using time of the week[C]//Special interest tracks and posters of the 14th international conference on World Wide Web. New York: ACM, 2005.

    [14]

    DE J E, VAN P M, ROOS M. Time patterns, geospatial clustering and mobility statistics based on mobile phone network data[C]//Federal Committee on Statistical Methodology research conference. Washington, USA: Statistics Netherlands, 2012.

    [15]

    HALVEY M, KEANE M T, SMYTH B. Mobile web surfing is the same as web surfing[J]. Communications of the ACM, 2006, 49(3): 76-81.

    [16]

    JIANG Z Q, XIE W J, LI M X, et al. Calling patterns in human communication dynamics[J]. Proceedings of the National Academy of Sciences, 2013, 110(5): 1600-1605.

    [17]

    CHUNG J Y, CHOI Y, PARK B, et al. Measurement analysis of mobile traffic in enterprise networks[C]// Network Operations and Management Symposium (APNOMS), 2011 13th Asia-Pacific. Taipei: China, IEEE, 2011: 1-4.

    [18]

    VERKASALO H. Contextual patterns in mobile service usage[J]. Personal and Ubiquitous Computing, 2009, 13(5): 331-342.

    [19]

    HALVEY M, KEANE M T, SMYTH B. Time based patterns in mobile-internet surfing[C]//Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. Delft: ACM, 2006: 31-34.

  • 期刊类型引用(4)

    1. 吴家顺. 一种多出口环境下的HTTP流量细粒度调度方法. 信息技术与信息化. 2024(09): 31-34 . 百度学术
    2. 谈俊林. 大数据技术在通信运营商异网获客系统的应用. 软件工程. 2020(01): 27-29 . 百度学术
    3. 刘超,刘馨璐,王攀,张丽娜. 基于DPI和大数据分析的宽带家庭画像. 计算机技术与发展. 2018(12): 162-166 . 百度学术
    4. 顾亦然,黄子轩. 基于双层网络的学生用户通讯行为分析与建模. 南京邮电大学学报(自然科学版). 2016(02): 41-48 . 百度学术

    其他类型引用(14)

计量
  • 文章访问数:  6876
  • HTML全文浏览量:  156
  • PDF下载量:  573
  • 被引次数: 18
出版历程
  • 刊出日期:  2015-12-14

目录

    /

    返回文章
    返回