具有N-S磁极效应的最大间隔模糊分类器

刘忠宝, 裴松年, 杨秋翔

刘忠宝, 裴松年, 杨秋翔. 具有N-S磁极效应的最大间隔模糊分类器[J]. 电子科技大学学报, 2016, 45(2): 227-232.
引用本文: 刘忠宝, 裴松年, 杨秋翔. 具有N-S磁极效应的最大间隔模糊分类器[J]. 电子科技大学学报, 2016, 45(2): 227-232.
LIU Zhong-bao, PEI Song-nian, YANG Qiu-xiang. Maximum Margin Fuzzy Classifier with N-S Magnetic Pole Effect[J]. Journal of University of Electronic Science and Technology of China, 2016, 45(2): 227-232.
Citation: LIU Zhong-bao, PEI Song-nian, YANG Qiu-xiang. Maximum Margin Fuzzy Classifier with N-S Magnetic Pole Effect[J]. Journal of University of Electronic Science and Technology of China, 2016, 45(2): 227-232.

具有N-S磁极效应的最大间隔模糊分类器

详细信息
  • 中图分类号: TP181

Maximum Margin Fuzzy Classifier with N-S Magnetic Pole Effect

  • 摘要: 该文提出一种具有N-S磁极效应的最大间隔模糊分类器(MPMMFC)。该方法寻求一个具有N-S磁极效应的最优超平面,使得一类样本受磁极吸引离超平面尽可能近,另一类样本受磁极排斥离超平面尽可能远。针对传统支持向量机面临的对噪声和野点敏感问题,引入模糊技术来降低噪声和野点对分类的影响,从而进一步提高泛化性能和分类效率。通过人工数据集和实际数据集上的实验,证明了MPMMFC的有效性。
  • [1]

    KOBY C, MEHRYAR M, FEMANDO P. Gaussian margin machines[C]//Proceedings of the 12th International Conference on Artificial Intelligence and Statistics. Clearwater Beach Florida: Journal of Machine Learning Research, 2009, 5: 105-112.

    [2]

    VAPNIK V. The nature of statistical learning theory[M]. New York: Springer-Verlag, 1995.

    [3] 李航. 统计学习方法[M]. 北京: 清华大学出版社, 2012: 95-135. LI Hang. Statistical learning methods[M]. Beijing: Tsinghua University Press, 2012: 95-135.
    [4] 邓乃扬, 田英杰. 支持向量机——理论、算法与拓展[M]. 北京: 科学出版社, 2009. DENG Nai-yang, TIAN Ying-jie. Support vector machine-theory, algorithms and extension[M]. Beijing: Science Press, 2009.
    [5]

    SCHOLKOPF B, SMOLA A, BARTLET P. New support vector algorithms[J]. Neural Computation, 2000, 12(5): 1207-1245.

    [6]

    SCHOLKOPF B, SMOLA A . Learning with kernels[M]. Cambridge: MIT, 2002.

    [7]

    TAX D M J, DUIN R P W. Support vector data description[J]. Machine Learning, 2004, 54(1): 45-66.

    [8]

    LIN C F, WAN S D. Fuzzy support vector machine[J]. IEEE Transactions on Neural Networks, 2002, 13(2): 464-471.

    [9]

    SHIVASWAMY P K, JEBARA T. Maximum relative margin and data-dependent regularization[J]. Journal of Machine Learning Research, 2010, 11(2): 747-788.

    [10] 陶剑文, 王士同. 大间隔最小压缩包含球学习机[J]. 软件学报, 2012, 23(6): 1458-1471. TAO Jian-wen, WANG Shi-tong. Large margin and minimal reduced enclosing ball learning machine[J]. Journal of Software, 2012, 23(3): 1458-1471.
    [11] 刘忠宝, 王士同. 基于熵理论和核密度估计的最大间隔学习机[J]. 电子与信息学报, 2011, 33(9): 2187-2194. LIU Zhong-bao, WANG Shi-tong. A maximum margin learning machine based on entropy concept and kernel density estimation[J]. Journal of Electronics Information Technology, 2011, 33(9): 2187-2194.
    [12]

    WU Ming-rui, YE Jie-ping. A small sphere and large margin approach for novelty detection using training data with outliners[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2009, 31(11): 2088-2092.

    [13]

    HAO P Y. A new fuzzy maximal-margin spherical-structured multi-class support vector machine[C]//Proceedings of the 2013 International Conference on Machine Learning and Cybernetics. Tianjin: Machine Learning and Cybernetics (ICMLC), 2013, 1: 241-246.

    [14] 张祥, 徐光佑, 肖小玲. 基于样本之间紧密度的模糊支持向量机方法[J]. 软件学报, 2006, 17(5): 951-958. ZHANG Xiang, XU Guang-you, XIAO Xiao-ling. Fuzzy support vector machine based on affinity among samples[J]. Journal of Software, 2006, 17(5): 951-958.
    [15]

    QIN Chuan-dong, LIU San-yang. Fuzzy smooth support vector machine with different smooth functions[J]. Journal of Systems Engineering and Electronics, 2012, 23(3): 460-466.

    [16]

    TSANG I W, KWOK J T, CHEUNG P M. Core vector machines: Fast SVM training on very large data sets[J]. Journal of Machine Learning Research, 2005(6): 363-392.

  • 期刊类型引用(1)

    1. 刘忠宝,张兴芹,王文莉. 融合磁极效应和数据分布特征的最大间隔学习机. 江西师范大学学报(自然科学版). 2023(06): 645-651 . 百度学术

    其他类型引用(3)

计量
  • 文章访问数:  5274
  • HTML全文浏览量:  137
  • PDF下载量:  268
  • 被引次数: 4
出版历程
  • 刊出日期:  2016-04-14

目录

    /

    返回文章
    返回